In this paper, we consider a model for repeated count data, with within-subject correlation and/or overdispersion. It extends both the generalized linear mixed model and the negative-binomial model. This model, proposed in a likelihood context [17,18] is placed in a Bayesian inferential framework. An important contribution takes the form of Bayesian model assessment based on pivotal quantities, rather than the often less adequate DIC. By means of a real biological data set, we also discuss some Bayesian model selection aspects, using a pivotal quantity proposed by Johnson [12].