Pitcher, Lincoln H Smith, Laurence C. Gleason, Colin J. Yang, Kang CryoSheds: a GIS modeling framework for delineating land-ice watersheds for the Greenland Ice Sheet <p>Choice of watershed delineation technique is an important source of uncertainty for cryo-hydrologic studies of the Greenland Ice Sheet (GrIS), with different methods yielding different watersheds for a common pour point. First, this paper explores this uncertainty for the Akuliarusiarsuup Kuua River Northern Tributary, Western Greenland. Next, a standardized, semi-automated modeling framework for generating land-ice watersheds for GrIS land-terminating ice (henceforth referred to as CryoSheds) using geographic information systems (GIS) hydrologic modeling tools is presented. The framework uses ArcGIS and the ArcPy geoprocessing library to delineate two types of land-ice watersheds, namely those defined by: (1) a hydraulic pressure potential with varying water to ice overburden pressure ratios (<i>k-value</i>), which determines theoretical flow paths from the hydrostatic equation, using surface and bedrock digital elevation models (DEMs) and (2) a surface topography DEM alone. Lastly, a demonstration of the CryoSheds method is presented for seven remotely sensed proglacial pour points along the Aussivigssuit River (AR), Western Greenland, and its largest tributaries. GrIS meltwater runoff from these seven nested land-ice watersheds is estimated using Modele Atmospherique Regional (MAR) v.3.2 and runoff uncertainties due to watershed delineation parameter selection is estimated.</p> Greenland Ice Sheet;meltwater runoff;geographic information systems;hydrologic watershed modeling;catchment boundary delineation 2016-09-21
    https://tandf.figshare.com/articles/journal_contribution/CryoSheds_a_GIS_modeling_framework_for_delineating_land-ice_watersheds_for_the_Greenland_Ice_Sheet/3843528
10.6084/m9.figshare.3843528.v1