Tzvetkov, Nikolay T. Antonov, Liudmil Subnanomolar indazole-5-carboxamide inhibitors of monoamine oxidase B (MAO-B) continued: indications of iron binding, experimental evidence for optimised solubility and brain penetration <p>Pharmacological and physicochemical studies of <i>N</i>-unsubstituted indazole-5-carboxamides (subclass I) and their structurally optimised N1-methylated analogues (subclass II), initially developed as drug and radioligand candidates for the treatment and diagnosis of Parkinson’s disease (PD), are presented. The compounds are highly brain permeable, selective, reversible, and competitive monoamine oxidase B (MAO-B) inhibitors with improved water-solubility and subnanomolar potency (pIC<sub>50 </sub>>8.8). Using a well-validated, combined X-ray/modelling technology platform, we performed a semi-quantitative analysis of the binding modes of all compounds and investigated the role of the indazole N1 position for their MAO-B inhibitory activity. Moreover, compounds NTZ-1006, 1032, and 1441 were investigated for their ability to bind Fe<sup>2+</sup> and Fe<sup>3+</sup> ions using UV-visible spectroscopy.</p> Alzheimer’s disease;free energy calculations;iron chelators;MAO inhibitors;Parkinson’s disease 2017-07-20
    https://tandf.figshare.com/articles/journal_contribution/Subnanomolar_indazole-5-carboxamide_inhibitors_of_monoamine_oxidase_B_MAO-B_continued_indications_of_iron_binding_experimental_evidence_for_optimised_solubility_and_brain_penetration/5226160
10.6084/m9.figshare.5226160.v1