10.6084/m9.figshare.8020262.v2 Aikaterini Sakellari Aikaterini Sakellari Sotirios Karavoltsos Sotirios Karavoltsos Dimitra Tagkouli Dimitra Tagkouli Christiana Rizou Christiana Rizou Vassilia J. Sinanoglou Vassilia J. Sinanoglou Panagiotis Zoumpoulakis Panagiotis Zoumpoulakis Georgios Koutrotsios Georgios Koutrotsios Georgios I. Zervakis Georgios I. Zervakis Nick Kalogeropoulos Nick Kalogeropoulos Trace Elements in <i>Pleurotus Ostreatus</i>, <i>P. Eryngii,</i> and <i>P. Nebrodensis</i> Mushrooms Cultivated on Various Agricultural By-Products Taylor & Francis Group 2019 Atomic emission spectrometry (AES); bioaccumulation factors; dietary intake; inductively coupled plasmamass spectrometry (ICP-MS); mushrooms; trace elements 2019-09-02 11:09:24 Journal contribution https://tandf.figshare.com/articles/journal_contribution/Trace_Elements_in_i_Pleurotus_Ostreatus_i_i_P_Eryngii_i_and_i_P_Nebrodensis_i_Mushrooms_Cultivated_on_Various_Agricultural_By-Products/8020262 <p>Mushrooms are efficient accumulators of essential and toxic elements. Although oyster (<i>Pleurotus</i> spp.) mushrooms are widely commercialized and consumed, few data exist regarding trace elements content and bioaccumulation in cultivated <i>P. ostreatus</i> and <i>P. eryngii</i>, while no data are available for <i>P. nebrodensis</i>. The contents of Al, As, Ba, Cd, Co, Cr, Cs, Cu, Fe, K, Mn, Na, Ni, Pb, Rb, Sr, V, and Zn were monitored using inductively coupled plasma-mass spectrometry (ICP-MS) and atomic emission spectrometry (AES) in <i>P. ostreatus, P. eryngii,</i> and <i>P. nebrodensis</i> mushrooms and their cultivation substrates that include wheat straw (WHS), grape marc (GMC), olive leaves (OLV), and two-phase olive mill wastes (OMW), separately or in mixtures. Bioaccumulation factors (BAFs) less than 0.3 were obtained for Al, Ba, Co, Cr, Fe, Mn, Ni, Pb, Sr, and V; BAFs exceeding 1 for K > Zn > Cd > Cr > Rb > As, while the BAFs for Na were less 0.7. Mushrooms grown on OLV and OMW presented lower BAFs than those grown on WHS and GMC for all elements except for K, Cd, and Cu. <i>P. ostreatus</i> was an effective accumulator for Cr, Fe, and Zn; <i>P. eryngii</i> for Al, Cs, Ni, and V; and <i>P. nebrodensis</i> for As and Cd. The estimated daily intakes (μg kg<sup>−1</sup> body weight) from mushroom consumption were less than 0.010 for As, Cd, Co, Cs, Pb, and V, 0.010–0.10 for Ba, Cr, Ni, and Sr, 0.10–5.0 for Al, Cu, Fe, Mn, Rb, and Zn, 65–83 for Na, and 858–1030 for K. Overall, the mushrooms studied provide significant amounts of K, adequate amounts of Mn and Zn and low amounts of Na and toxic elements.</p>