Taylor & Francis Group
Browse
gcpi_a_1707194_sm7246.docx (844.07 kB)

Analysis of drivers’ deceleration behavior based on naturalistic driving data

Download (844.07 kB)
journal contribution
posted on 2020-01-27, 17:08 authored by Shuang Li, Penghui Li, Yao Yao, Xiaofeng Han, Yanhai Xu, Long Chen

Objective: As one of the bases for designing a humanlike brake control system for the intelligent vehicle, drivers’ deceleration behavior needs to be understood. There are two modes for drivers’ deceleration behavior: (i) brake pedal input, by applying brake system to reduce the speed; (ii) no pedal input, by releasing the accelerator pedal without pressing the brake pedal, thus decelerating by naturalistic driving resistance. The deceleration behavior that drivers choose to press the brake pedal has been investigated in previous studies. However, releasing the accelerator pedal behavior has not received much attention. The objective of this study is to investigate factors that influence drivers’ choice of the two deceleration modes using naturalistic driving data, which provide a theoretical foundation for the design of the brake control system.

Methods: A logistic model was constructed to model drivers’ deceleration mode, valued as “no pedal input” or “brake pedal input” for dependent variables. Factors such as Light condition, Intersection mode, Road alignment, Traffic flow, Traffic light, Ego-vehicle motion state, Lead vehicle motion state, Time headway (THW), and Ego-vehicle speed were considered in the model as independent variables.

Results: 393 deceleration events were selected from the naturalistic driving data, which used as the database for the regression model. As a result, 6 remarkable factors were found to influence drivers’ deceleration model, which include Traffic flow, Intersection mode, Lead vehicle motion state, Ego-vehicle motion state, Ego-vehicle speed and THW. Specifically, (1) the possibility of drivers choosing “no pedal input” is gradually increasing with the increase of THW and speed; (2) The drivers prefer to choose “no pedal input” when the lead vehicle is decelerating compared to it’s stationary. This probability is relatively high when the lead vehicle is traveling along the road; (3) the possibility of choosing “no pedal input” at intersection is higher than roads without intersection; (4) the possibility of choosing “no pedal input” is higher when traveling with more traffic flow.

Conclusion: The drivers’ deceleration behavior can be divided into “no pedal input” and “brake pedal input.” The following six factors significantly affect drivers’ choice of deceleration mode: Traffic flow, Intersection mode, Lead vehicle motion state, Ego-vehicle motion state, Ego-vehicle speed and THW. The logistic regression model can quantify the influence of these six factors on drivers’ deceleration behavior. This study provides a theoretical basis for the braking system design of ADAS (Advanced Driving Assistant System) and intelligent control system.

Funding

This research was supported by National Natural Science Foundation of China (Grant No.51775448), the Ministry of Education Chunhui Program (Grant No.Z2012024), the State Key Laboratory of Automotive Safety & Energy (under the Contract “ZZ2019-062: Driver workload monitor and application based on driver's physiological signals” and Project No. KF1803: “Investigation on Drivers' Takeover Adaptability in Automated Vehicle: the Role of Human and Vehicular Status”), and the Automated Vehicle Testing and Evaluation Technology Project in China Automotive Engineering Research Institute Co., Ltd.

History

Usage metrics

    Traffic Injury Prevention

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC