Antimicrobial mechanism and the effect of atmospheric pressure N2 plasma jet on the regeneration capacity of Staphylococcus aureus biofilm

This study systematically assessed the inactivation mechanism on Staphylococcus aureus biofilms by a N2 atmospheric-pressure plasma jet and the effect on the biofilm regeneration capacity from the bacteria which survived, and their progenies. The total bacterial populations were 7.18 ± 0.34 log10 CFU ml−1 in biofilms and these were effectively inactivated (>5.5-log10 CFU ml−1) within 30 min of exposure. Meanwhile, >80% of the S. aureus biofilm cells lost their metabolic capacity. In comparison, ∼20% of the plasma-treated bacteria entered a viable but non-culturable state. Moreover, the percentage of membrane-intact bacteria declined to ∼30%. Scanning electron microscope images demonstrated cell shrinkage and deformation post-treatment. The total amount of intracellular reactive oxygen species was observed to have significantly increased in membrane-intact bacterial cells with increasing plasma dose. Notably, the N2 plasma treatment could effectively inhibit the biofilm regeneration ability of the bacteria which survived, leading to a long-term phenotypic response and dose-dependent inactivation effect on S. aureus biofilms, in addition to the direct rapid bactericidal effect.