Taylor & Francis Group
Browse
lpbb_a_1525561_sm6906.pdf (265.23 kB)

Bioproduction of low-pigment xanthan gum by a cell-wall deficient mutant of Xanthomonas campestris

Download (265.23 kB)
journal contribution
posted on 2018-11-03, 00:23 authored by Yongmei Liu, Zhonghua Wang, Mingyuan Liu, Lin Zhou, Yunying Sha

This work aims to enhance the bioproduction of xanthan gum by screening a hyper-yield producer from the wild-type Xanthomonas campestris during a long-term continuous subculture. We reported a cell-wall deficient mutant, which performed a shift of cell morphology from rod-shaped to round-shaped. Both the yield of xanthan gum and the conversion rate of feedstock were assessed using sucrose as a carbon source with the supplement of yeast extract powder, l-glutamic acid, and other raw materials. After 96 h aerobic fermentation, the yield of xanthan gum of the mutant reached up to 32 g/L, which was 3.4 times of that of the wild-type strain. The conversion rate of feedstock in the mutant was up to 92.1%, which was 3 times of that of the wild-type (31.2%). Furthermore, pigments generated were determined and compared. As a result, the fermentation broth of the wild-type performed an OD560nm of 0.296, which was 5.8 times of that (OD560nm = 0.051) of the mutant. Microscopy analysis showed that the percentage of free-living cells in broth affected the color of the final product. Moreover, the robustness of the fermentation performance of the cell-wall deficient mutant at a pilot scale showed potential for industrial application.

Funding

This work was supported by the Project of Taizhou Polytechnic College [Grant no.: TZYKYZD-17-5].

History