Taylor & Francis Group
Browse
gcoo_a_1267728_sm9971.docx (838.29 kB)

Catalytically active metal organic framework based on a porphyrin modified by electron-withdrawing groups

Download (838.29 kB)
journal contribution
posted on 2016-12-05, 15:39 authored by Weixia Xu, Zengqi Zhang, Xin Zhao, Jun Li

One metal-free porphyrin, modified by electron-withdrawing groups, was synthesized by introduction of two peripheral pyridyl substituents and two metal coordination polymers, {[Zn(C42H16F10N6)]·2C2H7 N}n (1) and {[Co(C42H16F10N6)]·C2H7 N}n (2), were synthesized solvothermally. In 1, each porphyrin connected four other porphyrin molecules to construct a 2-D network through coordination bonds. Similarly, in 2 every Co(II) porphyrin coordinated with four adjacent molecules to form a 2-D framework. Thermogravimetric analyses indicate that both 1 and 2 show high-thermal stabilities. The fluorescence data of 1 and 2 show that 1 may be a candidate for potential inorganic–organic photoactive materials. Catalytic oxidation results show that 2 displays high activity with the only product acetophenone quantitatively in 81.4%, and after six cycles, the catalytic activity slightly decreases. These features of 2, including the exceptional stability, and high catalytic activity, make it outstanding among MOFs reported in the literature.

History

Usage metrics

    Journal of Coordination Chemistry

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC