Coordinated scheduling of intercell production and intercell transportation in the equipment manufacturing industry

Intercell moves are caused by exceptional parts which need to be processed in multiple cells. Intercell cooperation disrupts the cellular manufacturing philosophy of creating independent cells, but is essential to lower the costs for enterprises. This article addresses an intercell scheduling problem considering limited transportation capability. To solve this problem, a two-stage ant colony optimization approach is proposed, in which pre-scheduling and re-scheduling are performed sequentially. To evaluate and optimize the interaction of production and transportation, a transportation benefit function is presented, according to which the scheduling solutions are adjusted. The computational results show that the transportation benefit function is more effective than other strategies, and the proposed approach has significant advantages over CPLEX in both the production dimension and the transportation dimension.