SUPPLEMENTARY MATERIAL

Cytochalasins from Endophytic Diaporthe sp. GDG-118

Xishan Huang ^{a,†}, Dexiong Zhou ^{a,†}, Yan Liang ^a, Xiaobo Liu ^a, Fei Cao ^b,

Yuyue Qin^a, Tuxiang Mo^a, Zhaolong Xu^a, Jun Li^{a*}, Ruiyun Yang^{a,*}

^a State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, College of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, P. R. China;

^b College of Pharmaceutical Sciences, Hebei University, Baoding, P. R. China

[†] These authors contributed equally to this work.

* Correspondence: : yang_rui_yun@163.com; lijun9593@163.com.

Tel/Fax: 86-773-2120958.

Cytochalasins from Endophytic Diaporthe sp. GDG-118

ABSTRACT

The plant *Sophora tonkinensis*, possessed a range of active compounds, was traditionally used in the medicine of Chinese minorities. Endophytic fungi were isolated from this plant, of which the fungus *Diaporthe* sp. GDG-118 was fermented and extracted with methanol. The extract was screened by antifungal and antibacterial assays leading to the discovery of two new 21-acetoxycytochalasins (1-2) and five known cytochalasins (3–7). These two new compounds were elucidated by spectroscopic analyses, and further their absolute configurations were determined by the X-ray of compound **3** and comparing their experimental CD spectra. The antibacterial and antifungal effects of these compounds were evaluated. Compound **2** showed moderate inhibitory activity against *Bacillus anthraci* and *Escherichia coli* with MIC value of 12.5 μ g/mL, and **7** showed strong antifungal activity against *Alternaria oleracea*, *Pestalotiopsis theae* and *Colletotrichum capsici* with MIC values of 3.125 μ g/mL, 1.56 μ g/mL and 1.56 μ g/mL, respectively.

KEYWORDS

Sophora tonkinensis; Diaporthe sp.; 21-acetoxycytochalasins; antibacterial effects; antifungal effects

List of supporting information

- Table S1. ¹H and ¹³C NMR data of compounds 1 and 2
- Table S2. Antifungal activities of compounds 1–7
- Table S3. Antibacterial activities of compounds 1–7
- Figure S1. Selected HMBC and ¹H-¹H COSY correlations of compounds 1 and 2

Figure S2. The NOESY correlations of compounds 1 and 2

- Figure S3. X-ray structure of compound 3
- Figure S4. Experimental and calculated ECD spectra of compounds 1 and 2
- Figure S5. HRESIMS spectrum of compound 1

Figure S6. ¹H NMR spectrum (400 MHz, Methanol- d_4) of compound **1**

Figure S7. ¹³C NMR spectrum (100 MHz, Methanol- d_4) of compound 1

Figure S8. $^{1}H^{-1}H$ COSY spectrum (400 MHz, Methanol- d_{4}) of compound 1

Figure S9. HSQC spectrum (400 MHz, Methanol- d_4) of compound 1

Figure S10. HMBC spectrum (400 MHz, Methanol-d₄) of compound 1

- Figure S11. NOESY spectrum (400 MHz, Methanol-*d*₄) of compound 1
- Figure S12. HRESIMS spectrum of compound 2
- Figure S13. ¹H NMR spectrum (400 MHz, Methanol-*d*₄) of compound 2
- Figure S14. ¹³C NMR spectrum (100 MHz, Methanol-*d*₄) of compound 2

Figure S15. ¹H-¹H COSY spectrum (400 MHz, Methanol- d_4) of compound 2

Figure S16. HSQC spectrum (400 MHz, Methanol-d₄) of compound 2

Figure S17. HMBC spectrum (400 MHz, Methanol- d_4) of compound 2

Figure S18. NOESY spectrum (400 MHz, Methanol-*d*₄) of compound 2

Figure S19. ¹H NMR spectrum (400 MHz, Methanol- d_4) of compound 3

Figure S20. ¹³C NMR spectrum (100 MHz, Methanol- d_4) of compound 3

Figure S21. ¹H NMR spectrum (400 MHz, CDCl₃) of compound 4

Figure S22. ¹³C NMR spectrum (100 MHz, CDCl₃) of compound 4

Figure S23. ¹H NMR spectrum (400 MHz, Methanol-*d*₄) of compound 5

Figure S24. ¹³C NMR spectrum (100 MHz, Methanol-*d*₄) of compound 5

Figure S25. ¹H NMR spectrum (400 MHz, Methanol- d_4) of compound **6**

Figure S26. ¹³C NMR spectrum (100 MHz, Methanol- d_4) of compound 6

Figure S27. ¹H NMR spectrum (400 MHz, Acetone- d_6) of compound **7**

Figure S28. ¹³C NMR spectrum (100 MHz, Acetone- d_6) of compound **7**

position	1		2		
	δ (H)	δ (C)	δ (H)	δ (C)	
1		175.0		174.4	
2			5.59, s		
3	3.30 (<i>m</i>)	54.1	3.28, m	53.7	
4	2.20 (<i>dd</i> , <i>J</i> =5.5, 2.7)	50.1	2.18, t (4.6)	48.1	
5	2.70, m	33.0	33.0 2.94, m		
6		150.9		148.9	
7	3.68, d (10.2)	71.5	4.07, dd (12.9, 1.9)	76.7	
8	3.02, t (9.9)	48.5	2.42, t (12.8)	45.4	
9		49.5		47.3	
10	2.93, dd (13.1, 6.3)	45.5	2.90, dd (13.6, 3.6)	45.8	
	2.78, m		2.53, dd (13.6, 9.6)		
11	0.62, d (6.8)	13.4	1.15, d (6.7)	15.2	
12	5.08, m,	112.6	5.39, m	114.3	
	4.90, m		5.21, t (2.2)		
13	5.98, dd (15.4, 9.6)	132.2	1.88, m	44.9	
14	5.65, m	136.0	3.71, m	88.2	
15	2.12, m	44.2	2.00, m	40.0	
	1.95, dd (12.9, 4.8)		1.40, m		
16	2.74, m	32.4	2.13, m	30.5	
17	5.23, d (7.3)	136.4	5.24, s	133.6	
18		133.3		138.2	
19	6.70, d (16.5)	135.9	2.27, m	36.2	
20	5.58, dd (16.5, 3.5)	122.8	2.61, m	31.7	
			2.08, m		
21	5.44, d (3.2)	78.3	5.18, t (2.7)	73.6	
22	1.00, d (6.9)	24.3	1.11, d (7.1)	24.8	
23	1.77, s	21.0	1.72, s	23.8	
24	,	170.5		170.4	
25	2.30, s	21.0	2.12, s	21.4	
1'		138.7		137.3	
2'/6'	7.25, m	130.6	7.13, m	129.2	
3'/5'	7.30, m	129.3	7.32, m	129.1	
4'	7.23. m	127.4	7.26. m	127.3	

Table S1. ¹H and ¹³C NMR data of compounds **1** (in Acetone- d_6 , J in Hz) and **2** (in CDCl₃, J in Hz)

	Strains (MIC, µg/mL)					
Compounds	Alternaria	Pestalotiopsis	Colletotrichum	Ceratocystis		
	oleracea	theae	capsici	paradoxa		
1	50	50	100	100		
2	50	50	100	100		
3	6.25	12.5	6.25	25		
4	6.25	6.25	100	100		
5	100	25	100	100		
6	100	25	100	100		
7	3.125	1.56	1.56	100		
Carbendazim	1.56	1.56	1.56	100		

Table S2. Antifungal activities of compounds 1–7

 Table S3. Antibacterial activities of compounds 1–7

	Strains (MIC, μ g/mL)						
Compounds	Bacillus	Bacillus	Bacillus	Proteus	Escherichia	Salmonella	
	subtilis	megaterium	anthraci	vuigaris	coli	paratyphi B	
1	25	50	50	100	25	50	
2	25	50	12.5	100	12.5	50	
3	50	25	50	-	50	100	
4	50	25	25	-	50	100	
5	100	50	25	100	100	50	
6	50	100	100	50	25	50	
7	100	50	100	50	50	50	
Ampicillin	3.125	3.125	3.125	1.56	3.125	12.5	

Figure S1. Selected HMBC and ${}^{1}H{}^{-1}H$ COSY correlations of compounds 1 and 2

Figure S2. The NOESY correlations of compounds 1 and 2

Figure S3. X-ray structure of compound 3

Figure S4. Experimental and calculated ECD spectra of compounds 1 and 2

12/25/17 11:04:29

Figure S5. HRESIMS spectrum of compound 1

Figure S6. ¹H NMR spectrum (400 MHz, Methanol- d_4) of compound **1**

Figure S7. ¹³C NMR spectrum (100 MHz, Methanol-*d*₄) of compound **1**

Figure S8. ¹H-¹H COSY spectrum (400 MHz, Methanol- d_4) of compound **1**

Figure S9. HSQC spectrum (400 MHz, Methanol-*d*₄) of compound 1

Figure S10. HMBC spectrum (400 MHz, Methanol- d_4) of compound 1

Figure S11. NOESY spectrum (400 MHz, Methanol-d₄) of compound 1

Figure S12. HRESIMS spectrum of compound 2

Figure S13. ¹H NMR spectrum (400 MHz, Methanol-*d*₄) of compound 2

Figure S14. ¹³C NMR spectrum (100 MHz, Methanol- d_4) of compound 2

Figure S15. ${}^{1}\text{H}-{}^{1}\text{H}$ COSY spectrum (400 MHz, Methanol- d_{4}) of compound 2

Figure S16. HSQC spectrum (400 MHz, Methanol- d_4) of compound 2

Figure S17. HMBC spectrum (400 MHz, Methanol- d_4) of compound 2

Figure S18. NOESY spectrum (400 MHz, Methanol- d_4) of compound 2

Figure S19. ¹H NMR spectrum (400 MHz, Methanol-*d*₄) of compound 3

Figure S20. ¹³C NMR spectrum (100 MHz, Methanol- d_4) of compound **3**

Figure S21. ¹H NMR spectrum (400 MHz, CDCl₃) of compound 4

Figure S22. ¹³C NMR spectrum (100 MHz, CDCl₃) of compound 4

Figure S23. ¹H NMR spectrum (400 MHz, Methanol-*d*₄) of compound 5

Figure S24. ¹³C NMR spectrum (100 MHz, Methanol- d_4) of compound **5**

Figure S25. ¹H NMR spectrum (400 MHz, Methanol-*d*₄) of compound 6

Figure S26. ¹³C NMR spectrum (100 MHz, Methanol- d_4) of compound **6**

Figure S27. ¹H NMR spectrum (400 MHz, Acetone- d_6) of compound **7**

Figure S27. ¹H NMR spectrum (400 MHz, Acetone- d_6) of compound **7**