Taylor & Francis Group
Browse
kccy_a_1651162_sm8798.docx (613.59 kB)

Distinct roles of cohesin acetyltransferases Esco1 and Esco2 in porcine oocyte meiosis I

Download (613.59 kB)
journal contribution
posted on 2019-08-07, 05:21 authored by Yajuan Lu, Ying Chen, Zhaokang Cui, Bo Xiong

In mammalian cells, cohesin acetyltransferases Esco1 and Esco2 acetylate cohesin subunit Smc3 to establish chromosome cohesion, ensuring the accurate chromosome segregation. However, we have previously documented that both Esco1 and Esco2 have unique substrates and roles in mouse oocyte meiosis I to orchestrate the meiotic progression, but whether these functions are conserved among species is still not determined. Here, we used porcine oocytes as a model to illustrate that Esco1 and Esco2 exerted conserved functions during oocyte meiosis. We observed that Esco1 and Esco2 exhibited different localization patterns in porcine oocytes. Esco1 was localized to the spindle apparatus while Esco2 was distributed on the chromosomes. Depletion of Esco1 by siRNA microinjection caused the meiotic arrest by showing the reduced frequency of first polar body extrusion and defective spindle/chromosome structure. In addition, Esco1 bound to α-tubulin and was required for its acetylation level to maintain the microtubule dynamics. By contrast, depletion of Esco2 by siRNA microinjection resulted in the accelerated meiotic progression by displaying the precocious polar body extrusion and inactivation of spindle assembly checkpoint. Notably, Esco2 was shown to be associated with histone H4 for the acetylation of H4K16 to modulate the kinetochore function. Collectively, our data reveal that Esco1 and Esco2 perform distinct and conserved functions in oocytes to drive the meiotic progression beyond their canonical roles in the cohesion establishment.

Funding

This work was supported by the National Key Research and Development Program of China [2018YFC1004002] and the National Natural Science Foundation of China [31822053].

History

Usage metrics

    Cell Cycle

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC