Taylor & Francis Group
Browse
tsta_a_1642139_sm0345.docx (582.73 kB)

Extraordinarily large kinetic isotope effect on alkene hydrogenation over Rh-based intermetallic compounds

Download (582.73 kB)
Version 2 2019-07-29, 08:49
Version 1 2019-07-11, 11:39
journal contribution
posted on 2019-07-29, 08:49 authored by Shinya Furukawa, Pingping Yi, Yuji Kunisada, Ken-Ichi Shimizu

A series of Rh-based intermetallic compounds supported on silica was prepared and tested in alkene hydrogenation at room temperature. H2 and D2 were used as the hydrogen sources and the kinetic isotope effect (KIE) in hydrogenation was studied. In styrene hydrogenation, the KIE values differed strongly depending on the intermetallic phase, and some intermetallic compounds with Sb and Pb exhibited remarkably high KIE values (>28). An extraordinarily high KIE value of 91, which has never been reported in catalytic reactions at room temperature, was observed particularly for RhPb2/SiO2. RhPb2/SiO2 also showed high KIE values in the hydrogenation of other unsaturated hydrocarbons such as phenylacetylene and cyclohexene. The density functional theory calculation focused on the surface diffusion of hydrogen suggested no contribution of the quantum tunneling effect to the high KIE values observed. A kinetic study revealed that the dissociative adsorption of H2 (D2) was the rate-determining step in the styrene hydrogenation over RhPb2/SiO2. We propose that the large KIE originates from the quantum tunneling occurring at the hydrogen adsorption process with the aid of the specific surface structure of the intermetallic compound and adsorbate alkene.

Funding

This work was supported by the Japan Society for the Promotion of Science [17H04965].

History