Fine atmospheric particles emitted by industrial, traffic and urban sources in France: characterization and genotoxicity

posted on 29.04.2016 by Aurélie Bonnefoy, Sophie Plumejeaud, Yves Noack, Dominique Robin, Pierre Doumenq, Florence Chaspoul, Virginie Tassistro, Thierry Orsière

Health risks associated with inhalation of fine particulate matter of 2.5 µm in diameter or smaller depend on their atmospheric levels and physicochemical properties. The relationships between chemical compositions and genotoxic activities of particles emitted by mineral industries, traffic and urban sources during summer and winter in the region of Provence-Alpes-Côte d'Azur (France) were investigated.

The fine particles were separated in respect to water-soluble (13 minerals and metals) and organic-extractable (16 polycyclic aromatic hydrocarbons) components that were quantified. The chromosome damaging properties of the hydrophilic and lipophilic extracts were assessed using the centromeric micronucleus assay on a human lung fibroblast cell line.

The composition of the fine particulate matter was variable and depended upon the sources and seasons. Both the hydrophilic and lipophilic extracts induced chromosome damage: (1) in hydrophilic extracts, Ca and Zn affected chromosome losses induction; (2) acenapthylene affected chromosome damage (breakages and losses) induction and naphthalene affected chromosome damage and losses induction in lipophilic extracts without metabolic activation; and (3) benzo[a]pyrene affected chromosome losses induction in lipophilic extracts with metabolic activation. Fine particulate matter arising from coal-fired power station, road traffic, and other urban sources were the most efficient to induce chromosome breakage.