Taylor & Francis Group
Browse
ugmb_a_1526987_sm8805.pdf (1.16 MB)

Geochemistry Shapes Bacterial Communities and their Metabolic Potentials in Tertiary Coalbed

Download (1.16 MB)
journal contribution
posted on 2018-11-21, 14:38 authored by Avinash Sharma, Kunal Jani, Vishal Thite, Sunil Kumar Dhar, Yogesh Shouche

Culture-dependent and independent approaches were used to understand the microbiota thriving in tertiary coalbed, located in Jammu and Kashmir, India. We observed changes in physicochemical properties of the surface sediment (CM1) and coalbed (CM2) which detailed the influence of environmental factors on the structure and capabilities of bacterial communities. A total of 316 bacterial isolates representing 35 genera were isolated. We noted comparable difference in uncultivable bacterial communities which revealed the predominance of Proteobacteria in both the study sites. Moreover, we observed differential abundance of phyla Actinobacteria (49.6%), Firmicutes (4.2%), and Bacteroidetes (0.8%) in CM1, whereas Actinobacteria (11%), Firmicutes (37.8%), and Bacteroidetes (2.3%) in CM2. Additionally, functional imputations using PICRUSt depicted ∼30% higher assemblage of major gene families in CM1 in comparison to CM2. Bacterial communities residing at CM1 were predominantly involved in methane oxidation, whereas CM2 communities found to play a vital process of conversion of coal to biogenic-methane enabling microbes to survive under constraints of high sulfur content, salt precipitation, and low nutrients and also provide clues to understand the potential of methanogenesis.

Funding

This work was supported by the “Department of Biotechnology (DBT), Government of India” (by Grant no. BT/PR/0054/NDB/52/94/2007), under the project “Establishment of Microbial Culture Collection”.

History