Taylor & Francis Group
Browse
kepi_a_1699894_sm0665.docx (668.99 kB)

Long-term ambient fine particulate matter and DNA methylation in inflammation pathways: results from the Sister Study

Download (668.99 kB)
journal contribution
posted on 2019-12-11, 07:32 authored by Cuicui Wang, Katie M. O’Brien, Zongli Xu, Dale P. Sandler, Jack A. Taylor, Clarice R. Weinberg

Although underlying mechanisms of long-term exposure to air pollution and cardiovascular disease remain obscure, effects might partially act through changes in DNA methylation. We examined the associations between long-term ambient fine particulate matter (PM2.5) and methylation, considering both a global measure and methylation at several specific inflammation-related loci, in two random sub-cohorts selected from a nationwide prospective study of US women. In one sub-cohort we measured long interspersed nucleotide element (LINE-1); in the other, we measured methylation at three candidates CpG loci related to inflammatory pathways [tumour necrosis factor-alpha (TNF-α) and toll-like receptor-2 (TLR-2)]. Annual average contemporaneous ambient PM2.5 concentrations were estimated for the current residence. We used both classical least-squares and quantile regression models to estimate the long-term effects. The women in sub-cohorts 1 (n = 491) and 2 (n = 882) had mean ages of 55.8 and 56.7, respectively. Neither modelling approach showed an association between long-term PM2.5 and LINE-1 methylation or between PM2.5 and either of the two CpG sites in TLR-2. Using linear regression, there was an estimated change of −6.5% (95% confidence interval CI: −13.34%, 0.35%) in mean methylation of TNF-α per 5 µg/m3 increase in PM2.5. Quantile regression showed that the downward shift was mainly in the lower half of the distribution of DNA methylation. Long-term residence in regions with higher ambient PM2.5 may be associated with increased TNF-α through a reduction in methylation, particularly in the lower tail. Epigenetic markers and quantile regression might provide insight into mechanisms underlying the relationship between air pollution and cardiovascular disease.

Funding

This work was supported by the Intramural Research Program of the National Institutes of Health, the National Institute of Environmental Health Sciences [ZIA-ES04405 for the Sister Study, and ZIA ES1022 for Sister Study].

History