Taylor & Francis Group
Browse
krnb_a_1101525_sm0186.pdf (359.9 kB)

Mosquito-specific microRNA-1890 targets the juvenile hormone-regulated serine protease JHA15 in the female mosquito gut

Download (0 kB)
journal contribution
posted on 2015-10-01, 00:00 authored by Bo Zhao, Sourav Roy, Alexander S. Raikhel, Keira J. Lucas, Amanda L. Gervaise

Females of the hematophagous mosquito species require a vertebrate blood meal to supply amino acids and other nutrients necessary for egg development, serving as the driving force for the spread of many vector-borne diseases in humans. Blood digestion utilizes both early and late phase serine proteases (SPs) that are differentially regulated at the transcriptional and post-transcriptional level. To uncover the regulatory complexity of SPs in the female mosquito midgut, we investigated involvement of miRNAs in regulating the juvenile hormone (JH)-controlled chymotrypsin-like SP, JHA15. We identified regulatory regions complementary to the mosquito-specific miRNA, miR-1890, within the 3′ UTR of JHA15 mRNA. The level of the JHA15 transcript is highest post eclosion and drastically declines post blood meal (PBM), exhibiting an opposite trend to miR-1890 that peaks at 24 h PBM. Depletion of miR-1890 results in defects in blood digestion, ovary development and egg deposition. JHA15 mRNA and protein levels are elevated in female mosquitoes with miR-1890 inhibition. JHA15 RNA interference in the miR-1890 depletion background alleviates miR-1890 depletion phenotypes. The miR-1890 gene is activated by the 20-hydroxyecdysone pathway that involves the ecdysone receptor and the early genes, E74B and Broad Z2. Our study suggests that miR-1890 controls JHA15 mRNA stability in a stage- and tissue- specific manner.

History