Taylor & Francis Group
Browse
uoeh_a_1731518_sm1264.docx (47.59 kB)

On site comparison of the OSHA 42, Asset EZ4-NCO, Iso-Chek, DAN and CIP10 methods for measuring toluene diisocyanate (TDI) at a polyurethane foam factory

Download (47.59 kB)
journal contribution
posted on 2020-04-13, 16:52 authored by Simon Aubin, El Mekki Hamdi, Audrey Joly, Philippe Sarazin, Jacques Lesage, Livain Breau, Mark Spence, Sébastien Gagné

Because of the semi-volatile nature of diisocyanates (being airborne in both physical vapor and particulate phases), their high reactivity and low occupational exposure limits, diisocyanate exposure evaluation has been challenging for industrial hygienists and laboratories. The objective of this study was to compare the toluene diisocyanate (2,4 and 2,6 isomers, TDI) concentration measured by five methods in a flexible polyurethane foam factory using different collection or derivatization approaches. The methods used were: OSHA 42 modified (filter, 1-(2-pyridyl)piperazine) (OSHA), Asset EZ4-NCO (denuder and filter, dibutylamine) (Asset), Iso-Chek (double-filter, 9-(N-methylaminomethyl) anthracene and 1,2-methoxyphenylpiperazine), DAN (filter, 1,8-diaminonaphthalene), and CIP10 (centrifugation, 1,2-methoxyphenylpiperazine). Particle real-time monitoring for concentration and size distribution was performed in parallel to improve the understanding of the potential bias between methods. The comparison study was performed over 3 days, providing 18 replicates for each of the 5 methods. Isocyanate concentrations collected for each sampling method were compared using linear mixed effect modeling. Compared to OSHA, which yielded the highest concentrations overall, the Asset and DAN methods provided the smallest biases (−29% (95% CI [−52;−6]) and −45% (95% CI [−67;−23]), respectively), while the CIP10 and Iso-Chek methods provided the largest biases (−82% (95% CI [−105;−66]) and −96% (95% CI [−118;−75]), respectively). The substantial bias of Iso-Chek and CIP10 seemed to be explained by the predominance of TDI in the form of sub-micron particles that were inadequately captured by these two methods due to their sampling principle, which are particle filtration without derivatizing agent and centrifugation respectively. Asset and DAN performance seemed to decrease as the sampling time increased. While DAN’s bias could be related to a reagent deficiency on the filter, the disparities between OSHA and Asset, both considered as reference methods, highlight the fact that the mechanisms of collection, derivation and extraction do not seem to be completely controlled. Finally, an upward trend has been observed between concentrations of particles below 300 nm in size and concentration levels of TDI. It has also been observed that TDI levels increased with the TDI foam index produced at the facility.

Funding

This project was supported by grants from the IRSST and the International Isocyanate Institute.

History

Usage metrics

    Journal of Occupational and Environmental Hygiene

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC