Overview of a combined computational–experimental evaluation for the assessment of panoramic sunroof impact characteristics for ejection mitigation

Objective: To meet increasing customer demand, many vehicle manufacturers are now offering a panoramic sunroof option in their vehicle lineup. Currently, there is no regulatory or consumer test aimed at assessing the potential for ejection mitigation of roof glazing, which leaves manufacturers to develop internal performance standards to guide designs. The goal of this study was to characterize the variety of occupant-to-roof impacts involving unbelted occupants in rollover crashes to determine the ranges of possible effective masses and impact velocities. This information can be used to define occupant retention requirements and performance criteria for roof glazing in occupant ejection protection.

Methods: This study combined computational (MADYMO and LS-Dyna) simulations of occupant kinematics in rollover crashes with laboratory rollover crash tests using the dynamic rollover test system (DRoTS) and linked them through controlled anthropomorphic test device (ATD)-to-roof (“drop”) impact tests. The DRoTS and the ATD drop tests were performed to explore impact scenarios and estimate dummy-to-roof impact impulses. Next, 13 sets of vehicle kinematics and deformation data were extracted from a combination of vehicle dynamics and finite element model simulations that reconstructed variations of rollover crash cases from the field data. Then occupant kinematics data were extracted from a full-factorial sensitivity study that used MADYMO simulations to investigate how changes in anthropometry and seating position would affect occupant–roof impacts across all 13 cases. Finite element (FE) simulations of ATD and Global Human Body Models Consortium (GHBMC) human body model (HBM) roof impacts were performed to investigate the most severe cases from the MADYMO simulations to generate a distribution of head-to-roof impact energies.

Results: From the multiparameter design of experiment and experimental study, kinematics and energy output were extracted and analyzed. Based on dummy-to-roof impact force and dummy-to-roof impact velocity, the most severe rollover scenarios were identified. In the DRoTS experiments followed by the drop tests, the range of identified impact velocities was between 2 and 5.8 m/s. However, computational simulations of the rollover crashes showed higher impact velocities and similar effective masses. The largest dummy-to-roof impact velocity was 11 m/s.

Conclusions: This study combined computational and experimental analyses to determine a range of possible unbelted occupant-to-roof impact energies. These results can be used to determine design parameters for an impactor for the assessment of the risk of roof glazing ejection for unbelted occupants in rollover crashes.