Production and characterization of a conserved M2e peptide-based specific IgY antibody: evaluation of the diagnostic potential via conjugation with latex nanoparticles

Antibodies play an important role in combating and controlling viral diseases such as influenza. Immunoglobulin Y (IgY) antibodies have several advantages such as a less invasive manufacturing process, ease of isolation, higher affinity compared with IgG antibodies, and cost-effectiveness. To date, although specific IgY production has been performed for different strains of influenza A, to the best of our knowledge, an IgY against the M2e peptide has not been produced. In the current study, IgY antibodies are produced, purified, and characterized using the M2e peptide sequence for the first time with the intent to apply them for the diagnosis of influenza A virus. Anti-M2e IgY antibodies are obtained from eggs using a two-step purification method. The activity and characterization of the antibodies are determined using an enzyme-linked immunosorbent assay, a nano-spectrophotometer, an SDS-Page assay, and a Western Blot analysis. Finally, anti-M2e IgY antibodies are conjugated to the latex nanoparticles, and the reaction between the influenza A virus and the nanoparticles is demonstrated using light microscopy, transmission electron microscopy, and energy dispersive X-ray spectroscopy. In conclusion, this study shows that anti-M2e IgY antibodies can contribute to the diagnosis, treatment, and prevention of the influenza A virus.