lpbb_a_1201680_sm4094.docx (42.77 kB)

Scale-up of naringinase production process based on the constant oxygen transfer rate for a novel strain of Bacillus methylotrophicus

Download (42.77 kB)
journal contribution
posted on 28.11.2016 by Keyur Raval, Kartik Gehlot, Prasanna B. D.

Naringinase bioprocess based on Bacillus methylotrophicus was successfully scaled up based on constant oxygen transfer rate (OTR) as the scale-up criterion from 5-L bioreactor to 20-L bioreactor. OTR was measured in 5 and 20-L bioreactor under various operating conditions using dynamic method. The operating conditions, where complete dispersion was observed were identified. The highest OTR of 0.035 and 0.04 mMol/L/s was observed in 5 and 20-L bioreactor, respectively. Critical dissolved oxygen concentration of novel isolated strain B. methylotrophicus was found to be 20% of oxygen saturation in optimized medium. The B. methylotrophicus cells grown on sucrose had maximum oxygen uptake rate of 0.14 mMol/L/s in optimized growth medium. The cells produced the maximum naringinase activity of 751 and 778 U/L at 34 hr in 5 and 20-L bioreactors, respectively. The maximum specific growth rate of about 0.178/hr was observed at both the scales of operations. The maximum naringinase yield of 160 and 164 U/g biomass was observed in 5 and 20-L bioreactors, respectively. The growth and production profiles at both scales were similar indicating successful scale-up strategy for B. methylotrophicus culture.