Taylor & Francis Group
Browse
1/1
5 files

Soil pH and phosphorus drive species composition and richness in semi-natural heathlands and grasslands unaffected by twentieth-century agricultural intensification

dataset
posted on 2018-08-23, 11:16 authored by Friederike Riesch, Hans Georg Stroh, Bettina Tonn, Johannes Isselstein

Background: Increased soil phosphorus (P) caused by agricultural intensification has been associated with decreased plant species richness (SR) in central Europe. How plant communities and soil P gradients are related in unimproved open habitats remains unclear.

Aims: The aim of this article was to characterise the relationship between soil chemical parameters and plant species composition and richness in unimproved open habitats.

Methods: The influence of soil chemical parameters (pH, P, K, Mg) on species composition was assessed, using data from 40 heathland and 54 grassland plots, by non-metric multidimensional scaling and permutational multivariate analysis of variance. The relationship between soil chemical parameters and SR was tested by linear mixed effects models.

Results: A direct relationship between heathland community composition and pH was observed, explaining 10% of variation in species composition, while P, Mg and pH together explained 17% of variation in grassland composition. In heathlands, SR increased with increasing pH, whereas in grasslands, SR decreased with increasing soil P.

Conclusions: Soil chemical parameters were substantially related to plant community composition and richness. In an area spared from a century of agricultural intensification, reduced pH appeared to constrain SR in heathlands, while even slight P increases (<10 mg kg−1) depressed plant SR in semi-natural grasslands.

Funding

This work was supported by the Landwirtschaftliche Rentenbank (German government’s Special Purpose Fund) [28 RZ 7007].

History