Supporting Information

Synthesis of Various Acylating Agents Directly from Carboxylic Acids

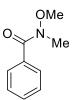
Fathima Pilathottathil,[‡] Doppalapudi Vineet Kumar,[‡] Alagiri Kaliyamoorthy*

*School of Chemistry, Indian Institute of Science Education and Research, Thiruvananthapuram, Vithura, Kerala 695551, India.

Contents

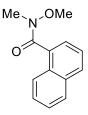
1.	General information	S2
2.	A. General procedure for the synthesis of Weinreb amides	S2
3.	Procedure for a gram-scale synthesis of Weinreb amide (2a)	S2
4.	Characterization data of synthesized compounds	S2-S14
5.	B. General procedure for synthesis of <i>N</i> -methyl-2-amino pyridine amides.	S14
6.	Characterization data of synthesized compounds	S14-S16
7.	C. General procedure for the synthesis of 2,3-Dihydro-7-azaindole amides	.S16
8.	Characterization data of synthesized compounds	S17-S18
9.	References	.S19-S20
10.	¹ H and ¹³ C NMR spectra of the products	.S21-S57

EXPERIMENTAL SECTION

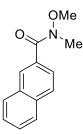

General information. Unless otherwise noted, all reactions were carried out in a reaction vessel with a teflon coated magnetic stirring bar under open atmosphere. Reagents and solvents were obtained from commercial suppliers and used without further purification. Literature procedures were followed for the synthesis of carboxylic acid precursors for **2v**,¹ **2w**,² **3f**,³ *N*-methyl-2-amino pyridine.⁴ Merck silica gel aluminium plates with F-254 indicator was used to perform analytical thin layer chromatography (TLC) and examined under UV. Column chromatography was performed with Finar silica gel 230-400 mesh. ¹H and ¹³C NMR were recorded in CDCl₃ on Brucker spectrometer (500 and 125 MHz) using tetramethylsilane as the internal standard. Spin multiplicities were described as s (singlet), d (doublet), dd (double doublet), t (triplet), and m (multiplet). IR was recorded using Brucker Alpha spectrometer. HRMS was recorded using Thermo Scientific Q Exactive TM Bench top LC-HRMS instrument. Melting points were uncorrected and determined using Stuart Melting Point SMP50 apparatus.

A. General procedure for the synthesis of Weinreb amides. To a mixture of benzoic acid (50 mg, 0.41 mmol, 1 equiv), PPh₃ (160 mg, 0.61 mmol, 1.5 equiv) and NBS (108.5 mg, 0.61 mmol, 1.5 equiv), CH_2Cl_2 (2 ml) was added and the reaction was stirred at 0 °C for 15 min. The reaction was brought to room temperature and *N*,*O*-dimethylhydroxylamine hydrochloride (59.5 mg, 0.61 mmol, 1.5 equiv) and Et_3N (45.5 mg, 63 µl, 0.45 mmol, 1.1 equiv) were added and reaction was stirred for 1 h at room temperature. The reaction mixture was quenched with aqueous sodium bicarbonate solution and diluted with CH_2Cl_2 . The bicarbonate washings were again extracted with CH_2Cl_2 and the combined organic layers were dried over anhydrous Na_2SO_4 and concentrated under reduced pressure. Column chromatography was performed using EtOAc/Petroleum ether (1:5).

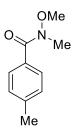
Procedure for a gram-scale synthesis of Weinreb amide (2a). To a mixture of benzoic acid (1 g, 8.1 mmol), PPh₃ (3.18 g, 12.15 mmol, 1.5 equiv) and NBS (2.16 g, 12.15 mmol, 1.5 equiv), CH₂Cl₂ (40 ml) was added and the reaction was stirred at 0 °C for 15 min. The reaction was brought to room temperature and *N*,*O*-dimethylhydroxylamine hydrochloride (1.18 g, 12.15 mmol, 1.5 equiv) and Et₃N (0.9 g, 1.24 ml, 8.91 mmol, 1.1 equiv) were added and reaction was stirred for 1 h at room temperature. The reaction mixture was quenched with aqueous sodium bicarbonate solution and diluted with CH₂Cl₂. The bicarbonate washings were again extracted with CH₂Cl₂ and the combined organic layers were dried over anhydrous Na₂SO₄ and concentrated under reduced pressure. Column chromatography was performed using EtOAc/Petroleum ether (1:5). The product **2a** was obtained as a clear oil in 75% (1.002 g) yield.


Characterization data of synthesized compounds.

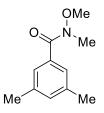
N-methoxy-N-methylbenzamide (2a).⁵


Prepared according to the general procedure A using benzoic acid (50 mg, 0.41 mmol). Yield: 97% (66 mg). The title compound was obtained as a pale yellow oil. ¹H NMR (500 MHz, CDCl₃): δ (ppm) 7.60-7.58 (m, 2H), 7.39 - 7.31 (m, 3H), 3.47 (s, 3H), 3.28 (s, 3H). ¹³C {¹H} NMR (125 MHz, CDCl₃): δ (ppm) 170.1, 134.2, 130.6, 128.2, 128.1, 61.1, 33.9. HRMS (m/z): calculated for C₉H₁₁NO₂ (M + H): 166.0860, found (M + H) 166.0825. The data is in accordance with reported literature.

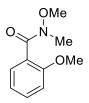
N-methoxy-N-methyl-1-naphthamide (2b).⁶


Prepared according to the general procedure A using 1-naphthoic acid (50 mg, 0.29 mmol). Yield: 93% (49 mg). The title compound was obtained as a pale yellow oil. ¹H NMR (500 MHz, CDCl₃): δ (ppm) 7.82-7.78 (m, 3H), 7.46-7.38 (m, 4H), 3.30 (brs, 6H). HRMS (m/z): calculated for C₁₃H₁₃NO₂ (M + H): 216.1019, found (M + H) 216.1017. The data is in accordance with reported literature.

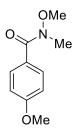
N-methoxy-N-methyl-2-naphthamide (2c).^{7a}


Prepared according to the general procedure A using 2-naphthoic acid (50 mg, 0.29 mmol). Yield: 93% (57.8 mg). The title compound was obtained as a pale yellow oil. ¹H NMR (500 MHz, CDCl₃): δ (ppm) 8.22 (s, 1H), 7.90 (d, *J* = 7.5 Hz, 1H), 7.86 (d, *J* = 8.5 Hz, 2H), 7.75 (d, *J* = 7.5 Hz, 1H), 7.56-7.52 (m, 2H), 3.56 (s, 3H), 3.41 (s, 3H). ¹³C NMR (125 MHz, CDCl₃): δ (ppm) 170.0, 134.3, 132.6, 131.5, 128.9, 128.8, 127.8, 127.7, 127.5, 126.5, 125.1, 61.2, 33.9. HRMS (m/z): Calculated for C₁₃H₁₃NO₂ (M+H): 216.1019, found (M+H) 216.1017. The data is in accordance with reported literature.

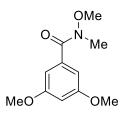
N-methoxy-N,4-dimethylbenzamide (2d).⁵


Prepared according to the general procedure A using 4-methylbenzoic acid (50 mg, 0.37 mmol). Yield: 81% (54 mg). The title compound was obtained as a yellow oil. ¹H NMR (500 MHz, CDCl₃): δ (ppm) 7.59 (d, *J* = 8.0 Hz, 2H), 7.19 (d, *J* = 7.5 Hz, 2H), 3.55 (s, 3H), 3.34 (s, 3H), 2.38 (s, 3H). HRMS (m/z): calculated for C₁₀H₁₃NO₂ (M + H): 180.1033, found (M + H) 180.1035. The data is in accordance with reported literature.

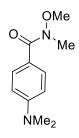
N-methoxy-N,3,5-trimethylbenzamide (2e).⁸


Prepared according to the general procedure A using 3,5-dimethylbenzoic acid (50 mg, 0.33 mmol). Yield: 62% (38 mg). The title compound was obtained as a yellow oil. ¹H NMR (500 MHz, CDCl₃): δ (ppm) 7.23 (s, 2H), 7.07 (s, 1H), 3.57 (s, 3H), 3.33 (s, 3H), 2.33 (s, 6H). HRMS (m/z): calculated for C₁₁H₁₅NO₂ (M + H): 194.1175, found (M + H) 194.1190. The data is in accordance with reported literature.

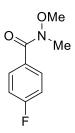
N,2-dimethoxy-N-methylbenzamide (2f).⁹


Prepared according to the general procedure A using 2-methoxybenzoic acid (50 mg, 0.32 mmol). Yield: 86% (53.7 mg). The title compound was obtained as a pale yellow oil. ¹H NMR (500 MHz, CDCl₃): δ (ppm) 7.36 (d, J = 7.5 Hz, 1H), 7.26 (s, 1H), 6.98 (d, J = 6.5 Hz, 1H), 6.92 (d, J = 8.0 Hz, 1H), 3.84 (s, 3H), 3.48 (brs, 3H), 3.31 (brs, 3H). HRMS (m/z): Calculated for C₁₀H₁₃NO₃ (M+H): 196.0968, found (M+H) 196.0966. The data is in accordance with reported literature.

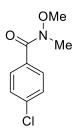
N,4-dimethoxy-N-methylbenzamide (2g).⁵


Prepared according to the general procedure A using 4-methoxybenzoic acid (50 mg, 0.32 mmol). Yield (52.9 mg, 82%). The title compound was obtained as a colourless oil. ¹H NMR (500 MHz, CDCl₃): δ (ppm) 7.71 (d, *J* = 8.5 Hz, 2H), 6.89 (d, *J* = 8.5 Hz, 2H), 3.83 (s, 3H), 3.55 (s, 3H), 3.34 (s, 3H). ¹³C NMR (125 MHz, CDCl₃): δ (ppm) 169.5, 161.6, 130.6, 126.1, 113.3, 60.9, 55.4, 34.0. HRMS (m/z): Calculated for C₁₀H₁₃NO₃ (M+H): 196.0968, found (M+H) 196.0966. The data is in accordance with reported literature.

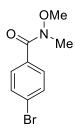
N,3,5-trimethoxy-N-methylbenzamide (2h).⁶


Prepared according to the general procedure A using 3,5-dimethoxybenzoic acid (50 mg, 0.27 mmol). Yield: 87% (52.9 mg). The title compound was obtained as a pale yellow oil. ¹H NMR (500 MHz, CDCl₃): δ (ppm) 6.78 (s, 2H), 6.53 (s, 1H), 3.80 (s, 6H), 3.59 (s, 3H), 3.33 (s, 3H). ¹³C NMR (125 MHz, CDCl₃): δ (ppm) 169.7, 160.5, 136.1, 106.0, 102.9, 61.2, 55.6, 34.1. HRMS (m/z): Calculated for C₁₁H₁₅NO₄ (M+H) 226.1073, found (M+H) 226.1070. The data is in accordance with reported literature.

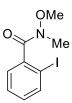
4-(dimethylamino)-N-methoxy-N-methylbenzamide (2i).¹⁰


Prepared according to the general procedure A using 4-dimethylaminobenzoic acid (50 mg, 0.30 mmol). Yield: 77% (49 mg). The title compound was obtained as a yellow oil. ¹H NMR (500 MHz, CDCl₃): δ (ppm) 7.72 (d, *J* = 8.5 Hz, 2H), 6.65 (d, *J* = 8.5 Hz, 2H), 3.59 (s, 3H), 3.34 (s, 3H), 3.01 (s, 6H). HRMS (m/z): calculated for C₁₁H₁₆N₂O₂ (M + H): 209.1384, found (M + H) 209.1301. The data is in accordance with reported literature.

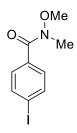
4-fluoro-N-methoxy-N-methylbenzamide (2j).^{11b}


Prepared according to the general procedure A using 4-flourobenzoic acid (50 mg, 0.36 mmol). Yield: 75% (49 mg). The title compound was obtained as a yellow oil. ¹H NMR (500 MHz, CDCl₃): δ (ppm) 7.68 - 7.65 (m, 2H), 7.01 (t, *J* = 8.5 Hz, 2H), 3.46 (s, 3H), 3.29 (s, 3H). HRMS (m/z): calculated for C₉H₁₀FNO₂ (M + H): 184.0768, found (M + H) 184.0768. The data is in accordance with reported literature.

4-chloro-N-methoxy-N-methylbenzamide (2k).⁵


Prepared according to the general procedure A using 4-chlorobenzoic acid (50 mg, 0.32 mmol). Yield: 85% (42 mg). The title compound was obtained as a yellow oil. ¹H NMR (500 MHz, CDCl₃): δ (ppm) 7.65 (d, J = 8.5 Hz, 2H), 7.38 (d, J = 8.5 Hz, 2H), 3.53 (s, 3H), 3.35 (s, 3H). ¹³C NMR (125 MHz, CDCl₃): δ (ppm) 168.8, 136.9, 132.4, 130.0, 128.4, 61.2, 33.6. HRMS (m/z): calculated for C₉H₁₀ClNO₂ (M + H): 200.0478, found (M + H) 200.0482. The data is in accordance with reported literature.

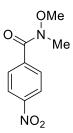
4-bromo-N-methoxy-N-methylbenzamide (21).^{11b}


Prepared according to the general procedure A using 4-bromobenzoic acid (50 mg, 0.25 mmol). Yield: 83% (42 mg). The title compound was obtained as a yellow oil. ¹H NMR (500 MHz, CDCl₃): δ (ppm) 7.58 (d, *J* = 8.5 Hz, 2H), 7.53 (d, *J* = 8.5 Hz, 2H), 3.53 (s, 3H), 3.35 (s, 3H). ¹³C NMR (125 MHz, CDCl₃): δ (ppm) 168.8, 132.9, 131.4, 130.1, 125.3, 61.2, 33.6. HRMS (m/z): calculated for C₉H₁₀BrNO₂ (M + H): 243.9967, found (M + H) 243.9969. The data is in accordance with reported literature.

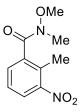
2-iodo-N-methoxy-N-methylbenzamide (2m).^{11a}

Prepared according to the general procedure A using 2-iodobenzoic acid (50 mg, 0.20 mmol). Yield: 97% (43 mg). The title compound was obtained as a yellow oil. ¹H NMR (500 MHz, CDCl₃): δ (ppm) 7.75 (d, *J* = 8.0 Hz, 1H), 7.31 (t, *J* = 7.5 Hz, 1H), 7.19 (d, *J* = 7.5 Hz, 1H), 7.02 (t, *J* = 8.0 Hz, 1H), 3.39 (m, 1+2 H), 3.32 (m, 2+1 H). ¹³C NMR (125 MHz, CDCl₃): δ (ppm) 170.8, 141.7, 138.9, 130.3, 127.7, 127.2, 92.5, 61.5, 32.6. HRMS (m/z): calculated for C₃H₁₀INO₂ (M + H): 291.9828, found (M + H) 291.9847. The data is in accordance with reported literature.

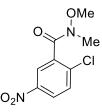
4-iodo-N-methoxy-N-methylbenzamide (2n).¹²


Prepared according to the general procedure A using 4-iodobenzoic acid (50 mg, 0.20 mmol). Yield: 81% (48 mg). The title compound was obtained as a yellow oil. ¹H NMR (500 MHz, CDCl₃): δ (ppm) 7.75 (d, J = 8.5 Hz, 2H), 7.43 (d, J = 8.0 Hz, 2H), 3.53 (s, 3H), 3.35 (s, 3H). ¹³C NMR (125 MHz, CDCl₃): δ (ppm) 169.0, 137.3, 133.5, 130.1, 97.4, 61.2, 33.6. HRMS (m/z): calculated for C₉H₁₀INO₂ (M + H): 291.9834, found (M + H) 291.9841. The data is in accordance with reported literature.

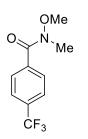
N-methoxy-N-methyl-2-nitrobenzamide (20).⁶


Prepared according to the general procedure A using 2-nitrobenzoic acid (50 mg, 0.30 mmol). Yield: 78% (49.3 mg). The title compound was obtained as a brown oil. ¹H NMR (500 MHz, CDCl₃): δ (ppm) 8.15 (d, *J* = 8.0 Hz, 1H), 7.72 (t, *J* = 7.5 Hz, 1H), 7.58 (t, *J* = 8.0 Hz, 1H), 7.53 (d, *J* = 7.5 Hz, 1H), 3.36 (s, 3H), 3.33 (s, 3H). ¹³C NMR (125 MHz, CDCl₃): δ (ppm) 168.9, 145.9, 134.0, 131.6, 130.1, 128.5, 124.0, 61.4, 33.5. HRMS (m/z): Calculated for C₉H₁₀N₂O₄ (M+H): 211.0713, found (M+H) 211.0712. The data is in accordance with reported literature.

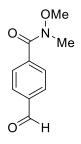
N-methoxy-N-methyl-4-nitrobenzamide (2p).^{11b}


Prepared according to the general procedure A using 4-nitrobenzoic acid (50 mg, 0.30 mmol). Yield: 97% (61.7 mg). The title compound was obtained as a yellow solid, mp = 71.8 °C. ¹H NMR (500 MHz, CDCl₃): δ (ppm) 8.26 (d, *J* = 7.0 Hz, 2H), 7.83 (d, *J* = 7.5 Hz, 2H), 3.52 (s, 3H), 3.39 (s, 3H). ¹³C NMR (125 MHz, CDCl₃): δ (ppm) 167.7, 148.8, 140.0, 129.2, 123.2, 61.3, 33.1. HRMS (m/z): Calculated for C₉H₁₀N₂O₄ (M + H): 211.0713, found (M+H) 211.0711. The data is in accordance with reported literature.

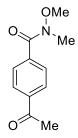
N-methoxy-N,2-dimethyl-3-nitrobenzamide (2q).¹²


Prepared according to the general procedure A using 2-methyl-3-nitrobenzoic acid (50 mg, 0.28 mmol). Yield: 74% (44.8 mg). The title compound was obtained as a pale yellow solid, mp = 53.0 °C. ¹H NMR (500 MHz, CDCl₃): δ (ppm) 7.90 (d, *J* = 8.5 Hz, 1H), 7.50 (d, *J* = 7.5 Hz, 1H), 7.39 (t, *J* = 7.8 Hz, 1H), 3.41 (s, 3H), 3.40 (s, 3H), 2.48 (s, 3H). HRMS (m/z): Calculated for C₁₀H₁₂N₂O₄ (M+H): 225.0870, found (M+H): 225.0864. The data is in accordance with reported literature.

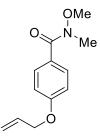
2-chloro-N-methoxy-N-methyl-5-nitrobenzamide (2r).


Prepared according to the general procedure A using 2-chloro-5-nitrobenzoic acid (50 mg, 0.25 mmol). Yield: 94% (57 mg). The title compound was obtained as a yellow solid, mp = 101.6 °C. ¹H NMR (500 MHz, CDCl₃): δ (ppm) 8.23 - 8.20 (m, 2H), 7.60 (d, *J* = 8.5 Hz, 1H), 3.50 (s, 3H), 3.41 (s, 3H). ¹³C NMR (125 MHz, CDCl₃): δ (ppm) 165.9, 146.3, 138.0, 136.7, 130.7, 125.0, 123.1, 61.7, 32.4. IR (ATR, cm⁻¹): 2928, 2863, 1665, 1459, 1358, 745. HRMS (m/z): calculated for $C_9H_9ClN_2O_4$ (M + H): 245.0323, found (M + H) 245.0341.

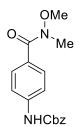
N-methoxy-N-methyl-4-(trifluoromethyl)benzamide (2s).⁵


Prepared according to the general procedure A using 4-trifluoromethylbenzoic acid (50 mg, 0.26 mmol). Yield: 95% (57.7 mg). The title compound was obtained as a pale yellow oil. ¹H NMR (500 MHz, CDCl₃): δ (ppm) 7.78 (d, *J* = 8.0 Hz, 2H), 7.67 (d, *J* = 7.5 Hz, 2H), 3.53 (s, 3H), 3.38 (s, 3H). HRMS (m/z): Calculated for C₁₀H₁₀F₃NO₂ (M+H) 234.0736, found (M+H) 234.0733. The data is in accordance with reported literature.

4-formyl-N-methoxy-N-methylbenzamide (2t).¹³


Prepared according to the general procedure A using 4-formylbenzoic acid (50 mg, 0.33 mmol). Yield: 82% (48 mg). The title compound was obtained as a yellow oil. ¹H NMR (500 MHz, CDCl₃): δ (ppm) 10.07 (s, 1H), 7.93 (d, *J* = 8.0 Hz, 2H), 7.81 (d, *J* = 8.0 Hz, 2H), 3.54 (s, 3H), 3.38 (s, 3H). ¹³C NMR (125 MHz, CDCl₃): δ (ppm) 191.7, 168.8, 139.8, 137.5, 129.4, 128.7, 61.3, 31.0. HRMS (m/z): calculated for C₁₀H₁₁NO₃ (M + H): 194.0811, found (M + H) 194.0828. The data is in accordance with reported literature.

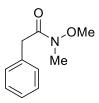
4-acetyl-N-methoxy-N-methylbenzamide (2u).^{7a}


Prepared according to the general procedure A using 4-acetylbenzoic acid. (50 mg, 0.30 mmol). Yield: (50.1 mg, 81%). The title compound was obtained as a pale yellow solid, mp = 41.7 °C. ¹H NMR (500 MHz, CDCl₃): δ (ppm) 7.97 (d, *J* = 8.0 Hz, 2H), 7.73 (d, *J* = 8.5 Hz, 2H), 3.52 (s, 3H), 3.36 (s, 3H), 2.62 (s, 3H). ¹³C NMR (125 MHz, CDCl₃): δ (ppm) 197.6, 169.0, 138.54, 138.47, 128.45, 128.07, 61.3, 33.5, 26.8. HRMS (m/z): Calculated for C₁₁H₁₃NO₃ (M+H) 208.0968, found (M+H) 208.0966. The data is in accordance with reported literature.

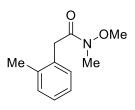
4-(allyloxy)-N-methoxy-N-methylbenzamide (2v).

Prepared according to the general procedure A using 4-allyloxybenzoic acid (50 mg, 0.28 mmol). Yield (41.8 mg, 67%). The title compound was obtained as an orange oil. ¹H NMR (500 MHz, CDCl₃): δ (ppm) 7.70 (d, J = 8.5 Hz, 2H). 6.90 (d, J = 8.5 Hz, 2H), 6.01- 6.08 (m, 1H), 5.41 (dd, J = 17.5, 1.5 Hz, 1H), 5.29 (dd, J = 10.5, 1 Hz, 1H), 4.56 - 4.57 (m, 2H), 3.55 (s, 3H), 3.34 (s, 3H). ¹³C NMR (125 MHz, CDCl₃): δ (ppm) 169.5, 160.6, 132.9, 130.6, 126.2, 118.1, 114.1, 68.9, 61.0, 34.0. IR (ATR, cm⁻¹): 2903, 1638, 1596, 1415, 1292, 1239, 787. HRMS (m/z): Calculated for C₁₂H₁₅NO₃ (M+H) 222.1124, found (M+H) 222.1124.

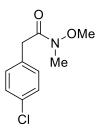
benzyl (4-(methoxy(methyl)carbamoyl)phenyl)carbamate (2w).


Prepared according to the general procedure A using 4-cbzaminobenzoic acid (50 mg, 0.18 mmol). Yield: 83% (47 mg). The title compound was obtained as a pale yellow solid, mp = 118.5 °C. ¹H NMR (500 MHz, CDCl₃): δ (ppm) 7.62 (d, *J* = 8.5 Hz, 2H), 7.23-7.41 (m, 7H), 6.91 (s, 1H), 5.13 (s, 2H), 3.47 (s, 3H), 3.27 (s, 3H). ¹³C NMR (125 MHz, CDCl₃): δ (ppm) 169.2, 153.2, 140.2, 135.9, 129.9, 128.7, 128.6, 128.5, 128.4, 117.6, 67.3, 61.1, 33.9. IR (ATR, cm⁻¹): 1732, 1610, 1534, 1224, 1060, 750. HRMS (m/z): Calculated for C₁₇H₁₈N₂O₄ (M + H): 315.1339, found (M + H) 315.1333.

N-methoxy-N-methyl-2-oxo-2-phenylacetamide (2x).¹⁴


Prepared according to the general procedure A using 2-oxo-2-phenylacetic acid (50 mg, 0.33 mmol). Yield: 75% (48 mg). The title compound was obtained as a white solid, mp = 68.8 °C. ¹H NMR (500 MHz, CDCl₃): δ (ppm) 7.90 (d, *J* = 8.0 Hz, 2H), 7.62 (d, *J* = 7.5 Hz, 1H), 7.50 (t, *J* = 7.5 Hz, 2H), 3.65 (s, 3H), 3.36 (s, 3H). ¹³C NMR (125 MHz, CDCl₃): δ (ppm) 190.9, 167.3, 134.5, 132.9, 129.5, 129.04, 62.2, 31.5. HRMS (m/z): calculated for C₁₀H₁₁NO₃ (M + H): 194.0811, found (M + H) 194.0827. The data is in accordance with reported literature.

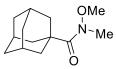
N-methoxy-N-methyl-2-phenylacetamide (3a).⁵


Prepared according to the general procedure A using phenylacetic acid (50 mg, 0.37 mmol). Yield: 94% (66 mg). The title compound was obtained as a yellow oil. ¹H NMR (500 MHz, CDCl₃): δ (ppm) 7.24-7.14 (m, 5H), 3.69 (s, 2H), 3.51 (s, 3H), 3.11 (s, 3H). HRMS (m/z): calculated for C₁₀H₁₃NO₂ (M + H): 180.1034, found (M + H) 180.1033. The data is in accordance with reported literature.

N-methoxy-N-methyl-2-(o-tolyl)acetamide (3b).¹⁵

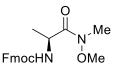
Prepared according to the general procedure A using o-tolylacetic acid (50 mg, 0.33 mmol). Yield: 80% (51.3 mg). The title compound was obtained as a pale yellow oil. ¹H NMR (500 MHz, CDCl₃): δ (ppm) 7.19 - 7.14 (m, 4H), 3.77 (s, 2H), 3.60 (s, 3H), 3.20 (s, 3H), 2.31 (s, 3H). ¹³C NMR (125 MHz, CDCl₃): δ (ppm) 172.7, 136.9, 133.7, 130.3, 130.0, 127.1, 126.1, 61.3, 37.2, 32.5, 19.8. HRMS (m/z): Calculated for C₁₁H₁₅NO₂ (M+H) 194.1175, found (M+H) 194.1173. The data is in accordance with reported literature.

2-(4-chlorophenyl)-N-methoxy-N-methylacetamide (3c).¹⁶



Prepared according to the general procedure A using 4-chlorophenylacetic acid (50 mg, 0.29 mmol). Yield: 80% (50 mg). The title compound was obtained as a pale yellow oil. ¹H NMR (500 MHz, CDCl₃): δ (ppm) 7.28 (d, *J* = 8.0 Hz, 2H), 7.22 (d, *J* = 7.5 Hz, 2H), 3.73 (s, 2H), 3.63 (s, 3H), 3.18 (s, 3H). ¹³C NMR (125 MHz, CDCl₃): δ (ppm) 171.9, 133.4, 132.8, 130.8, 128.7, 61.4, 38.7, 32.3. HRMS (m/z): Calculated for C₁₀H₁₂ClNO₂ (M+H) 214.0629, found (M+H) 214.0627. The data is in accordance with reported literature.

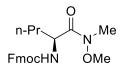
N-methoxy-N-methyl-2,2-diphenylacetamide (3d).¹³


Prepared according to the general procedure A using diphenylacetic acid (50 mg, 0.23 mmol). Yield: 82% (47.9 mg). The title compound was obtained as a pale yellow solid, mp = 110.0 °C. ¹H NMR (500 MHz, CDCl₃): δ (ppm) 7.31 - 7.29 (m, 8H), 7.25-7.23 (m, 2H), 5.54 (s, 1H), 3.48 (s, 3H), 3.23 (s, 3H). ¹³C NMR (125 MHz, CDCl₃): δ (ppm) 173.2, 139.5, 129.1, 128.5, 127.0, 61.5, 52.9, 32.5. HRMS (m/z): Calculated for C₁₆H₁₇NO₂ (M+H) 256.1332, found (M+H) 256.1328. The data is in accordance with reported literature.

(3r, 5r, 7r)-N-methoxy-N-methyladamantane-1-carboxamide (3e).⁵

Prepared according to the general procedure A using 1-adamantanecarboxylic acid (50 mg, 0.28 mmol). Yield: 68% (42.4 mg). The title compound was obtained as a pale yellow solid, mp = 45.0 °C. ¹H NMR (500 MHz, CDCl₃): δ (ppm) 3.66 (s, 3H), 3.15 (s, 3H), 1.98 (s, 9H), 1.70 (s, 6H). HRMS (m/z): Calculated for C₁₃H₂₁NO₂ (M+H) 224.1645, found (M+H) 224.1641. The data is in accordance with reported literature.

(9H-fluoren-9-yl)methyl (S)-(1-(methoxy(methyl)amino)-1-oxopropan-2-yl)carbamate (3f).^{17a}

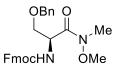

Prepared according to the general procedure A using Fmoc L-alanine (50 mg, 0.16 mmol). Yield: 80% (46 mg). The title compound was obtained as a colourless oil. ¹H NMR (500 MHz, CDCl₃): δ (ppm) 7.76 - 7.75 (m, 2H), 7.62 - 7.59 (m, 2H), 7.41 - 7.38 (m, 2H), 7.32 - 7.29 (m, 2H), 5.64 (d, *J* = 7.0 Hz, 1H), 4.76 (s, 1H), 4.36 - 4.35 (m, 2H), 4.23 - 4.21 (m, 1H), 3.77 (s, 3H), 3.22 (s, 3H), 1.38 - 1.36 (m,

3H). HRMS (m/z): calculated for $C_{20}H_{22}N_2O_4$ (M + H): 355.1658, found (M + H) 355.1647. $[\alpha]_D^{25} =$ +1.9 (*c* 0.68, CHCl₃). lit.¹⁶ $[\alpha]_D^{20} =$ +2.1 (*c* 0.68, CHCl₃). The data is in accordance with reported literature.

(9H-fluoren-9-yl)methyl (S)-(1-(methoxy(methyl)amino)-4-methyl-1-oxopentan-2-yl)carbamate (3g).¹⁸

Prepared according to the general procedure A using Fmoc L-leucine (50 mg, 0.14 mmol). Yield: 89% (50 mg). The title compound was obtained as a colourless oil. ¹H NMR (500 MHz, CDCl₃): δ (ppm) 7.76 - 7.75 (m, 2H), 7.62 - 7.58 (m, 2H), 7.41 - 7.38 (m, 2H), 7.32 - 7.29 (m, 2H), 5.41 (d, *J* = 9.0 Hz, 1H), 4.81 (d, *J* = 7.0 Hz, 1H), 4.37 - 4.35 (m, 2H), 4.23 - 4.22 (m, 1H), 3.79 (s, 3H), 3.21 (s, 3H), 1.75 - 1.70 (m, 2H), 1.51 - 1.49 (m, 2H), 0.99 - 0.94 (m, 6H). HRMS (m/z): calculated for C₂₃H₂₈N₂O₄ (M + H): 397.2121, found (M + H) 397.2117. The data is in accordance with reported literature. [α]_D²⁰ = +2.537 (*c* 0.1, CH₂Cl₂).

(9H-fluoren-9-yl)methyl (S)-(1-(methoxy(methyl)amino)-1-oxopentan-2-yl)carbamate (3h).^{17b}

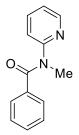

Prepared according to the general procedure A using Fmoc L-norvaline (50 mg, 0.15 mmol). Yield: 94% (53 mg). The title compound was obtained as a colourless oil. ¹H NMR (500 MHz, CDCl₃): δ (ppm) 7.76 - 7.75 (m, 2H), 7.61 - 7.59 (m, 2H), 7.40 - 7.37 (m, 2H), 7.32 - 7.29 (m, 2H), 5.49 (d, J = 8.8 Hz, 1H), 4.77 (s, 1H), 4.39 - 4.33 (m, 2H), 4.22 (t, J = 7.05 Hz, 1H), 3.78 (s, 3H), 3.22 (s, 3H), 1.75 -1.69 (m, 1H), 1.62 - 1.55 (m, 1H), 1.47 -1.42 (m, 2H), 0.94 (t, J = 7.25 Hz, 3H). HRMS (m/z): calculated for C₂₂H₂₆N₂O₄ (M + H): 383.1965, found (M + H) 383.1961. The data is in accordance with reported literature. [α]_D²⁰ = -2.920 (*c* 0.1, CH₂Cl₂).

(9H-fluoren-9-yl)methyl (2-(methoxy(methyl)amino)-2-oxoethyl)carbamate (3i).¹⁸

Prepared according to the general procedure A using Fmoc glycine (50 mg, 0.15 mmol). Yield: 78% (45 mg). The title compound was obtained as a colourless gummy oil. ¹H NMR (500 MHz, CDCl₃): δ (ppm) 7.77 – 7.75 (m, 2H), 7.62 – 7.61 (m, 2H), 7.41 – 7.38 (m, 2H), 7.33 – 7.30 (m, 2H), 5.59 (s, 1H),

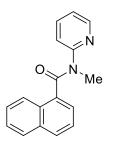
4.39 (d, J = 7 Hz, 2H), 4.25 – 4.23 (m, 1H), 4.17 (d, J = 3 Hz, 2H), 3.73 (s, 3H), 3.22 (s, 3H).). HRMS (m/z): calculated for C₁₉H₂₀N₂O₄ (M + H): 341.1495, found (M + H) 341.1491. The data is in accordance with reported literature.

(9H-fluoren-9-yl)methyl(S)-(3-(benzyloxy)-1-(methoxy(methyl)amino)-1-oxopropan-2-yl)carbamate (3j).

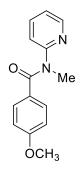


Prepared according to the general procedure A using Fmoc L-O-benzyl serine (50 mg, 0.12 mmol). Yield: 89% (49 mg). The title compound was obtained as a white solid, mp = 95.0 °C. ¹H NMR (500 MHz, CDCl₃): δ (ppm) 7.77 - 7.75 (m, 2H), 7.63 - 7.60 (m, 2H), 7.41 - 7.38 (m, 2H), 7.34 - 7.27 (m, 7H), 5.77 (d, *J* = 8.5 Hz, 1H), 4.95 (s, 1H), 4.60 - 4.51 (m, 2H), 4.36 (d, *J* = 7.0 Hz, 2H), 4.24 - 4.21 (m, 1H), 3.72 (s, 5H), 3.23 (s, 3H). ¹³C NMR (125 MHz, CDCl₃): δ (ppm) 156.1, 144.0, 143.9,141.4, 137.8, 128.5, 127.9, 127.2, 125.36, 125.33, 120.0, 69.6, 67.3, 61.6, 51.5, 47.2, 32.3. IR (ATR, cm⁻¹): 3856, 3749, 3311, 3055, 2936, 1716, 1658, 1517, 1450, 1240, 1102, 742, 617, 551. HRMS (m/z): calculated for C₂₇H₂₈N₂O₅ (M + H): 461.2070, found (M + H) 461.2068. [α]_D²⁰ = +4.804 (*c* 0.1, CH₂Cl₂).

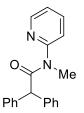
B. General procedure for synthesis of *N*-methyl-2-amino pyridine amides. To a mixture of benzoic acid (50 mg, 0.41 mmol, 1 equiv), PPh₃ (160 mg, 0.61 mmol, 1.5 equiv) and NBS (108.5 mg, 0.61 mmol, 1.5 equiv), CH₂Cl₂ (1.5 ml) was added and the reaction was stirred at 0 °C for 30 min. The reaction was brought to room temperature and DMAP (10 mg, 0.08 mmol, 0.20 equiv) was added and stirred for 10 min. The mixture of *N*-methyl-2-amino pyridine (49 mg, 0.45 mmol, 1.1 equiv), Et₃N (45.5 mg, 63 μ l, 0.45 mmol, 1.1 equiv) and CH₂Cl₂ (0.5 ml) were added and the reaction was stirred for 1 h at room temperature. The reaction mixture was diluted with EtOAc and washed with aqueous sodium bicarbonate solution. The bicarbonate washings were again extracted with EtOAc and the combined organic layers were dried over anhydrous Na₂SO₄ and concentrated under reduced pressure. Column chromatography was performed using EtOAc/Petroleum ether (1:5).


Characterization data of synthesized compounds

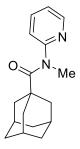
N-methyl-N-(pyridin-2-yl)benzamide (4a).⁷


Prepared according to the general procedure B using benzoic acid (50 mg, 0.41 mmol). Yield: 86% (75 mg). The title compound was obtained as a yellow oil. ¹H NMR (500 MHz, CDCl₃): δ (ppm) 8.37 - 8.36 (m, 1H), 7.37 - 7.34 (m, 1H), 7.27 - 7.22 (m, 3H), 7.16 - 7.13 (m, 2H), 6.97 - 6.95 (m, 1H), 6.73 (d, *J* = 8.0 Hz, 1H), 3.51 (s, 3H). ¹³C NMR (125 MHz, CDCl₃): δ (ppm) 171.1, 156.9, 148.8, 137.4, 136.1, 130.2, 128.6, 128.1, 121.7, 121.0, 36.1. HRMS (m/z): calculated for C_{13H12N2O} (M + H): 213.1022, found (M + H) 213.1023. The data is in accordance with reported literature.

N-methyl-N-(pyridine-2-yl)-1-naphthamide (4b).⁷


Prepared according to the general procedure B using 1-naphthoic acid (50 mg, 0.29 mmol). Yield: 74% (46 mg). The title compound was obtained as a white solid mp = 170.0 °C . ¹H NMR (500 MHz, CDCl₃): δ (ppm) 8.38 (d, *J* = 4.0 Hz, 1H), 8.08 (d, *J* = 8.5 Hz, 1H), 7.83 - 7.78 (m, 2H), 7.55 - 7.47 (m, 2H), 7.32 - 7.26 (m, 3H), 6.95 (t, *J* = 5.7 Hz, 2H), 3.60 (s, 3H). ¹³C NMR (125 MHz, CDCl₃): δ (ppm) 170.9, 155.8, 148.5, 137.3, 134.5, 133.5,130.1, 129.7, 128.4, 127.2, 126.4, 125.6, 125.2, 124.8, 121.0, 120.7, 35.7. HRMS (m/z): calculated for C₁₇H₁₄N₂O (M + H): 263.1178, found (M + H) 263.1172. The data is in accordance with reported literature.

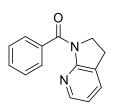
4-methoxy-N-methyl-N-(pyridine-2-yl)benzamide (4c).⁷


Prepared according to the general procedure B using 4-methoxybenzoic acid (50 mg, 0.33 mmol). Yield: 68% (40 mg). The title compound was obtained as a yellow oil. ¹H NMR (500 MHz, CDCl₃): δ (ppm) 8.36 (s, 1H), 7.36 (t, *J* = 7.5 Hz, 1H), 7.23 - 7.21 (m, 2H), 6.96-6.94 (m, 1H), 6.69 (d, *J* = 8 Hz, 1H), 6.64 - 6.63 (m, 2H), 3.68 (s, 3H), 3.49 (s, 3H). ¹³C NMR (125 MHz, CDCl₃): δ (ppm) 170.8, 161.2, 157.4, 148.8, 137.4, 130.8, 128.1, 121.7, 120.7, 113.4, 55.3, 36.1. HRMS (m/z): calculated for C₁₄H₁₄N₂O₂ (M + H): 243.1128, found (M + H) 243.1126.

N-methyl-2,2-diphenyl-N-(pyridine-2-yl)acetamide (4d).¹⁹

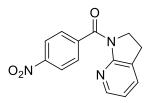
Prepared according to the general procedure B using 2,2-diphenylacetic acid (50 mg, 0.23 mmol). Yield: 58% (25 mg). The title compound was obtained as an off white solid, mp = 122.7 °C. ¹H NMR (500 MHz, CDCl₃): δ (ppm) 8.52 (s, 1H), 7.64 - 7.61 (m, 1H), 7.25 - 7.19 (m, 12H), 5.21 (s, 1H), 3.40 (s, 3H). HRMS (m/z): calculated for C₂₀H₁₈N₂O (M + H): 303.1491, found (M + H) 303.1478. The data is in accordance with reported literature.

(3r,5r,7r)-N-methyl-N-(pyridine-2-yl)adamantane-1-carboxamide (4e).

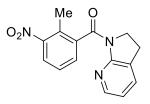


Prepared according to the general procedure B using 1-adamantane carboxylic acid (50 mg, 0.28 mmol). Yield: 81% (62 mg). The title compound was obtained as a white solid, mp = 95.1°C. ¹H NMR (500 MHz, CDCl₃): δ (ppm) 8.50 - 8.49 (m, 1H), 7.76 - 7.73 (m, 1H), 7.26 - 7.23 (m, 1H), 7.20 (d, *J* = 7.9 Hz, 1H), 3.25 (s, 3H), 1.86 (s, 3H), 1.76 (s, 6H), 1.60 - 1.51 (m, 6H). ¹³C NMR (125 MHz, CDCl₃): δ (ppm) 179.3, 158.0, 149.1, 138.4, 122.6, 122.4, 44.0, 39.9, 39.5, 36.5, 28.5. IR (ATR, cm⁻¹): 2909, 2855, 1645, 1585, 1468, 1348, 1281, 1149, 1042, 751, 659, 585. HRMS (m/z): calculated for C₁₇H₂₂N₂O (M + H): 271.1804, found (M + H) 271.1799.

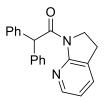
C. General procedure for the synthesis of 2,3-Dihydro-7-azaindole amides. A reaction tube with a teflon coated magnetic stir bar was charged with benzoic acid (50 mg, 0.41 mmol, 1 equiv), PPh₃ (160 mg, 0.61 mmol, 1.5 equiv) and NBS (108.5 mg, 0.61 mmol, 1.5 equiv). CH₂Cl₂ (2 ml) was added and the reaction was stirred at 0 °C for 30 min. The reaction was brought to room temperature and 2,3-dihydro-7-azaindole (54 mg, 0.45 mmol, 1.1 equiv) and Et₃N (45.5 mg, 63 μ l, 0.45 mmol, 1.1 equiv) were added and the reaction was stirred for 1 h at room temperature. The reaction mixture was diluted with EtOAc and washed with aqueous sodium bicarbonate solution. The bicarbonate washings were again extracted with EtOAc and the combined organic layers were dried over anhydrous Na₂SO₄ and concentrated under reduced pressure. Column chromatography was performed using EtOAc/Petroleum ether (1:5).


Characterization data of synthesized compounds.

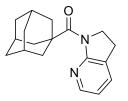
(2,3-dihydro-1H-pyrrolo[2,3-b]pyridin-1-yl)(phenyl)methanone (5a).


Prepared according to the general procedure C using benzoic acid (50 mg, 0.41 mmol). Yield: 73% (66.8 mg). The title compound was obtained as a white solid, mp = 114.0 °C. ¹H NMR (500 MHz, CDCl₃): δ (ppm) 7.85 (d, *J* = 5.0 Hz, 1H), 7.59 (d, *J* = 7.0 Hz, 2H), 7.48 - 7.45 (m, 2H), 7.38 (t, *J* = 7.5 Hz, 2H), 6.81 (dd, *J* = 7.5, 5 Hz, 1H), 4.22 (t, *J* = 8.0 Hz, 2H), 3.11 (t, *J* = 8.5 Hz, 2H). ¹³C NMR (125 MHz, CDCl₃): δ (ppm) 169.3, 156.2, 146.3, 136.1, 133.3, 130.7, 128.5, 127.8, 125.8, 118.5, 47.9, 25.1. IR (ATR, cm⁻¹): 1643, 1593, 1420, 1379, 1347, 1245, 790, 712. HRMS (m/z): Calculated for C₁₄H₁₂N₂O (M+H) 225.1022, found (M+H) 225.1022.

(2,3-dihydro-1H-pyrrolo[2,3-b]pyridin-1-yl)(4nitrophenyl)methanone (5b).

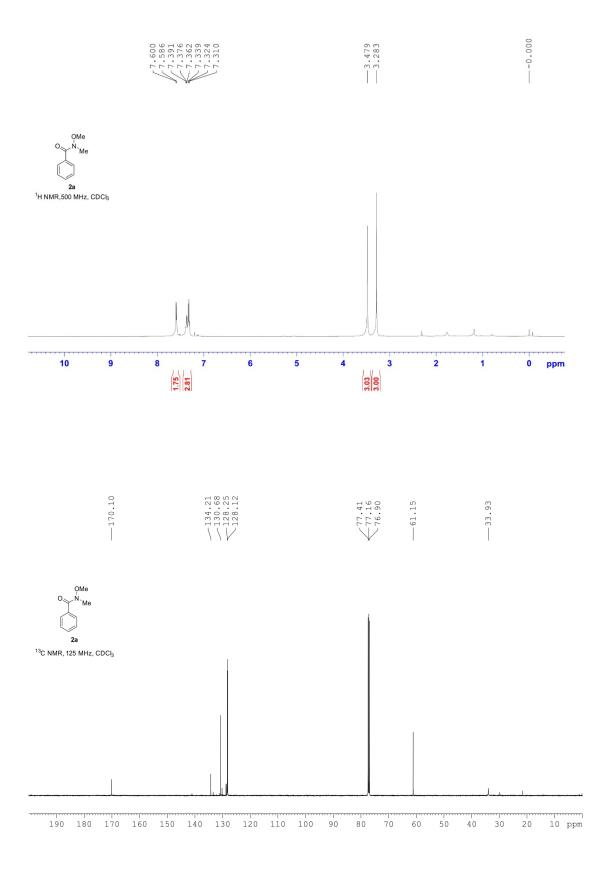

Prepared according to the general procedure C using 4-nitrobenzoic acid (50 mg, 0.30 mmol). Yield: 71% (57.7 mg). The title compound was obtained as an off-white solid, mp = 158.4 °C. ¹H NMR (500 MHz, CDCl₃): δ (ppm) 8.24 (d, *J* = 9.0 Hz, 2H), 7.76 (d, *J* = 5.0 Hz, 1H), 7.70 (d, *J* = 8.5 Hz, 2H), 7.50 (dd, *J* = 7.5, 1.5 Hz, 1H), 6.85 (dd, *J* = 7.5, 5.0 Hz, 1H), 4.28 (t, *J* = 8.0 Hz, 2H), 3.17 (t, *J* = 8.5 Hz, 2H). ¹³C NMR (125 MHz, CDCl₃): δ (ppm) 167.1, 155.3, 148.9, 146.2, 142.4, 133.8, 129.4, 125.8, 123.1, 119.2, 47.2, 24.9. IR (ATR, cm⁻¹): 1650, 1595, 1512, 1426, 1344, 1240, 852, 701. HRMS (m/z): Calculated for C₁₄H₁₁N₃O₃ (M+H) 270.0873, found (M+H) 270.0870.

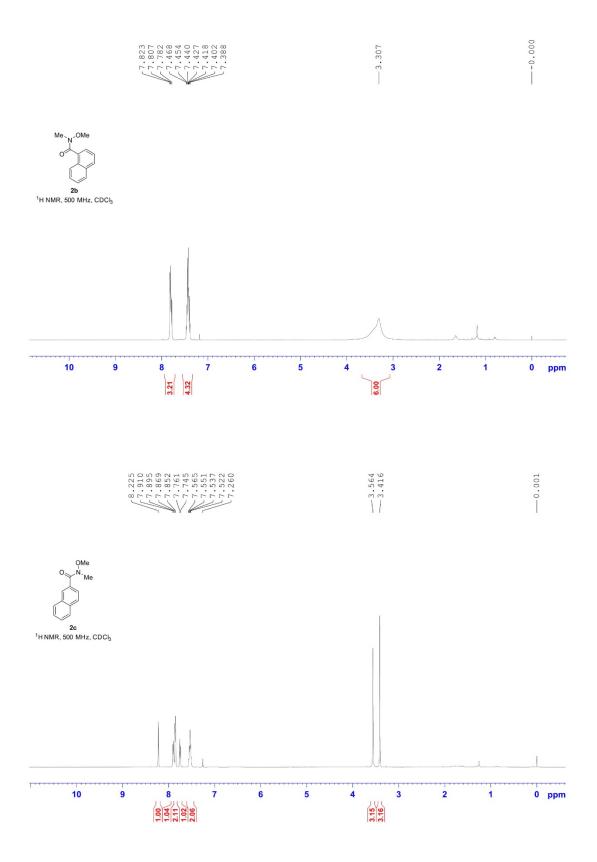
(2,3-dihydro-1H-pyrrolo[2,3-b]pyridin-1-yl)(2-methyl-nitrophenyl)methanone (5c).

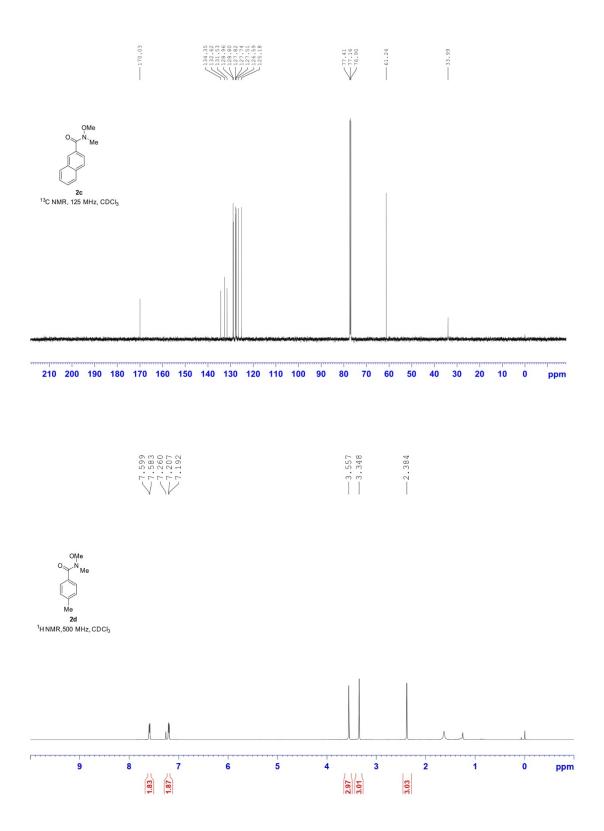

Prepared according to the general procedure C using 2-methyl-3-nitrobenzoic acid (50 mg, 0.27 mmol). Yield: 75% (45.4 mg). The title compound was obtained as a yellow solid, mp = 153.5 °C. ¹H NMR (500 MHz, CDCl₃): δ (ppm) 7.94 (d, J = 8.1 Hz, 1H), 7.71 (s, 1H), 7.48 - 7.43 (m, 2H), 7.37 - 7.34 (m, 1H), 6.83 - 6.81 (m, 1H), 4.31 (s, 2H), 3.18 (t, J = 8.5 Hz, 2H), 2.41 (s, 3H). ¹³C NMR (125 MHz, CDCl₃): δ (ppm) 166.8, 154.67, 150.0, 146.71, 141.0, 133.7, 130.8, 130.4, 126.5, 125.5, 124.8, 119.1, 46.0, 24.5, 16.5. IR (ATR, cm⁻¹) = 1642, 1591, 1526, 1422, 1346, 797, 733. HRMS (m/z): Calculated for C₁₅H₁₄N₃O₃ (M+H) 284.1030, found (M+H) 284.1020.

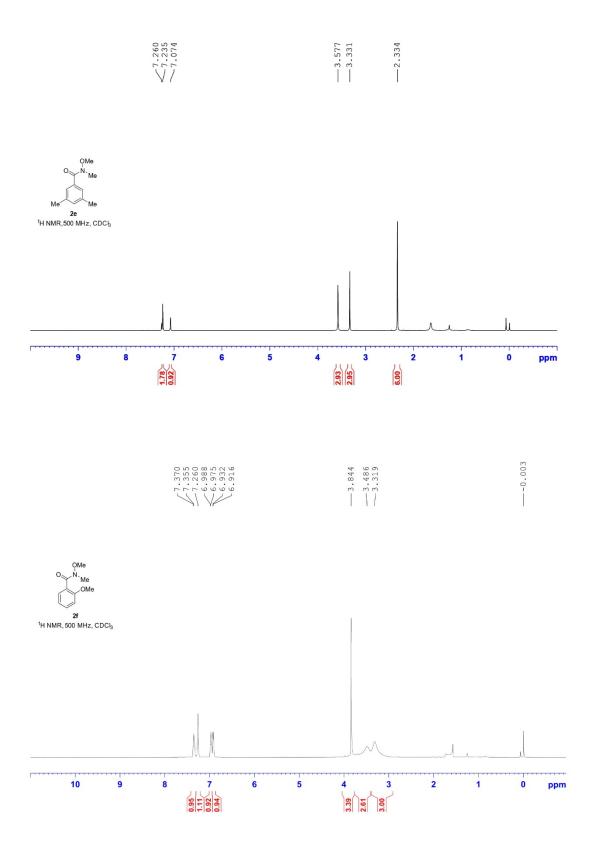
1-(2,3-dihydro-1H-pyrrolo[2,3-b]pyridin-1-yl)-2,2-diphenylethan-1-one (5d).

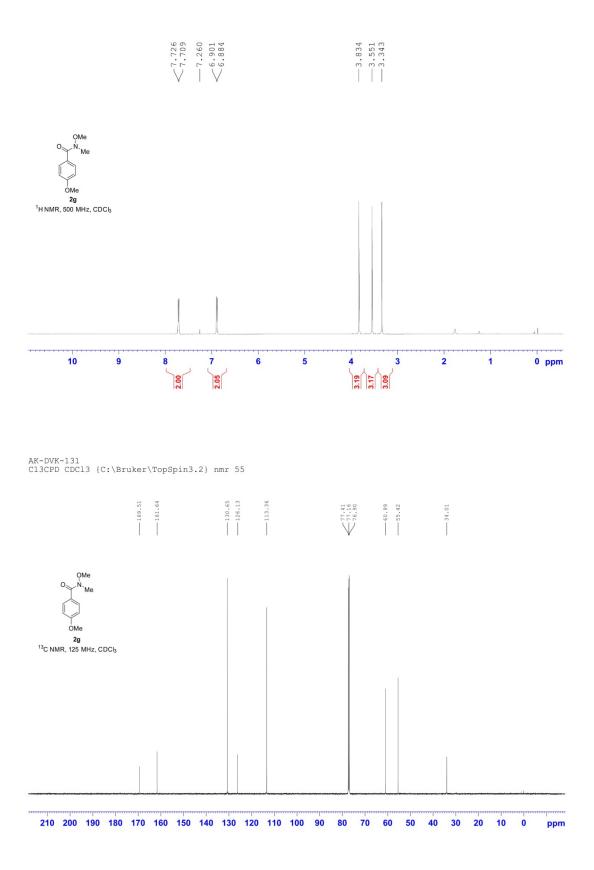
Prepared according to the general procedure C using diphenylacetic acid (50 mg, 0.23 mmol). Yield: 62% (44.5 mg). The title compound was obtained as a pale yellow solid, mp = 170.8 °C. ¹H NMR (500 MHz, CDCl₃): δ (ppm) 8.13 (d, *J* = 3.5 Hz, 1H), 7.44-7.41 (m, 5H), 7.37 (s, 1H), 7.29-7.25 (m, 4H), 7.21-7.18 (m, 2H), 6.85 (t, *J* = 5.5 Hz, 1H), 4.16 (t, *J* = 8.5 Hz, 2H), 3.01 (t, *J* = 8.0 Hz, 2H). ¹³C NMR (125 MHz, CDCl₃): δ (ppm) 171.9, 155.7, 146.1, 140.2, 133.6, 129.6, 128.3, 126.8, 126.3, 118.2, 54.6, 46.2, 24.0. IR (ATR, cm⁻¹): 1655, 1595, 1420, 1236, 805, 706. HRMS (m/z): Calculated for C₂₁H₁₈N₂O (M+H) 315.1491, found (M+H) 315.1481.

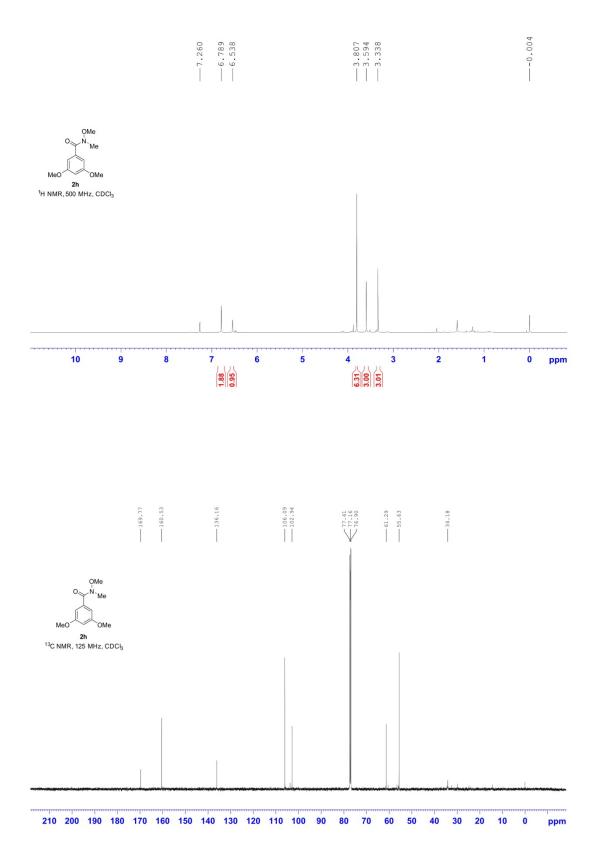

((3r,5r,7r)-adamantan-1-yl)(2,3-dihydro-1H-pyrrolo[2,3-b]pyridin-1-yl)methanone (5e).

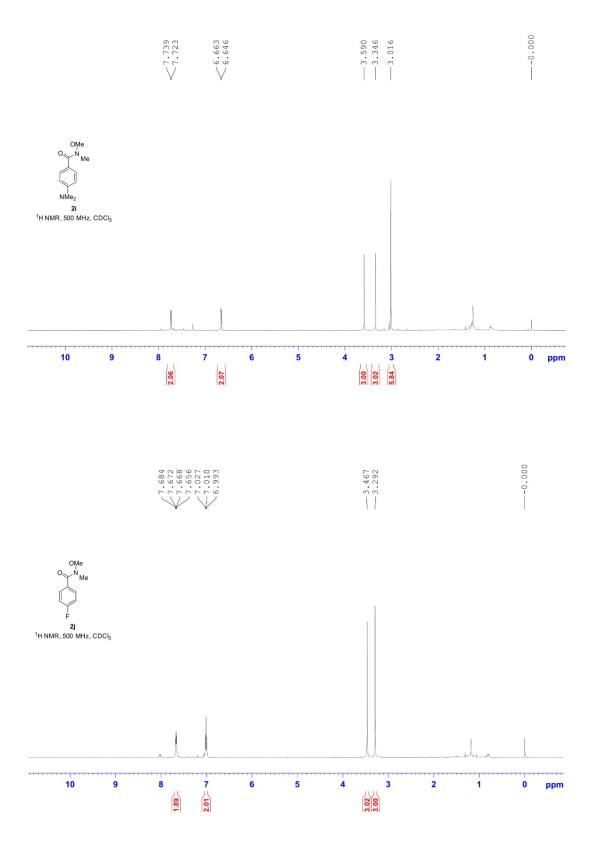


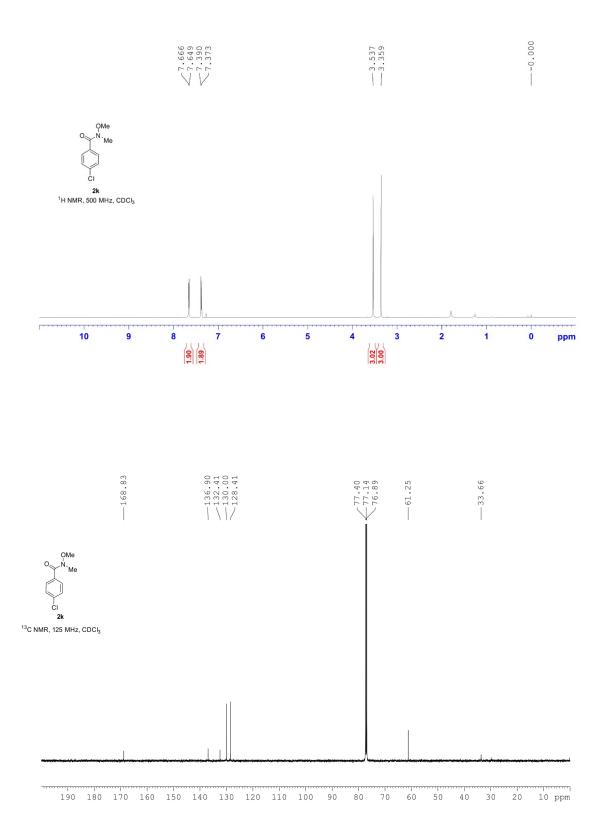

Prepared according to the general procedure C using 1-adamantanecarboxylic acid (50 mg, 0.28 mmol). Yield (58.7 mg, 75%). The title compound was obtained as a yellow solid, mp = 125.6 °C. ¹H NMR (500 MHz, CDCl₃): δ (ppm) 8.12-8.11 (m, 1H), 7.40 (dd, *J* = 7.25, 1 Hz, 1H), 6.82 (dd, *J* = 7.5, 5.0 Hz, 1H), 4.10 (t, *J* = 8.5 Hz, 2H), 2.98 (t, *J* = 8.5 Hz, 2H), 2.31 (d, *J* = 2 Hz, 6 H), 2.04 (s, 3H), 1.91 (d, *J* = 2.5 Hz, 1H), 1.81 (d, *J* = 11.5 Hz, 3H), 1.71 (d, *J* = 11.5 Hz, 4H). ¹³C NMR (125 MHz, CDCl₃): δ (ppm) 179.1, 156.0, 145.4, 133.0, 126.5, 117.6, 49.0, 43.6, 38.7, 36.84, 36.81, 36.56, 28.7, 27.9, 24.8. IR (ATR, cm⁻¹): 2904, 2853, 1640, 1597, 1416, 1294, 1240, 787. HRMS (m/z): Calculated for C₁₈H₂₂N₂O (M+H) 283.1804, found (M+H) 283.1799.

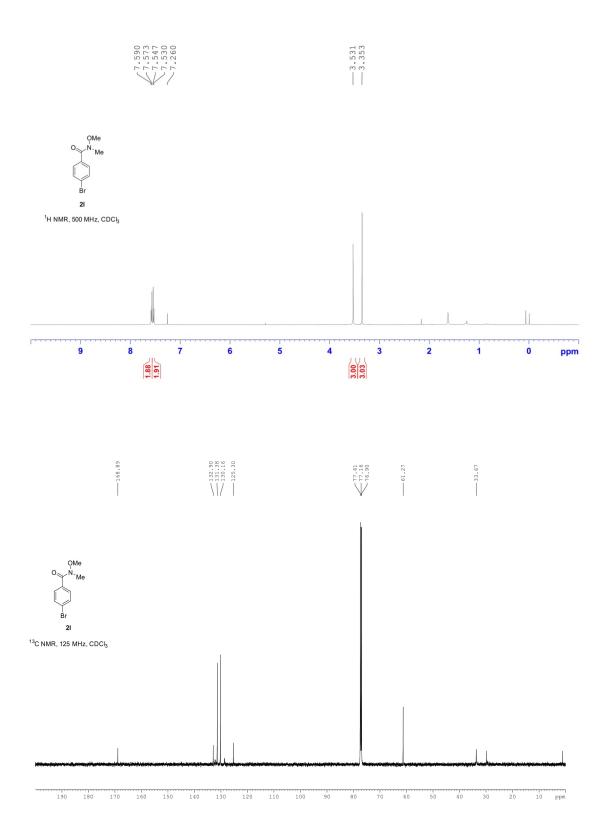

Reference

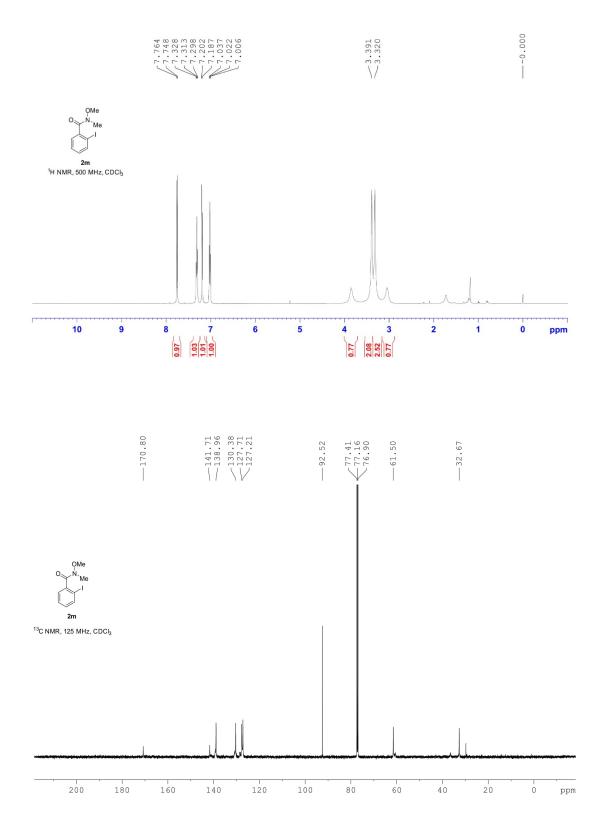

- [1] C. Lin, Y. Jiang, C. -A. Tao, X. Yin, Y. Lan, C. Wang, S. Wang, X. Liu, G. Li, ACS Appl. Mater. Interfaces 9 (2017) 11770.
- [2] T. -M. Kuo, M. -Y. Shen, S. -Y. Huang, Y. -K. Li, M. -C. Chuang, ACS Sens. 1 (2016) 124.
- [3] M. B. Gawande, P. S. Branco, Green Chem. 13 (2011) 3355.
- [4] O. M. Singh, S. J. Singh, S. N. Kim, S. -G. Lee, Bull. Korean. Chem. Soc. 28 (2007) 115.
- [5] T. Niu, W. Zhang, D. Huang, C. Xu, H. Wang, Y. Hu, Org. Lett. 11 (2009) 4474.
- [6] D. M. Rudzinski, C. B. Kelly, N. E. Leadbeater, Chem. Commun. 48 (2012) 9610.
- [7] (a) A. Wieckowska, R. Fransson, L. R. Odell, M. Larhed, J. Org. Chem. 76 (2011) 978.
 (b) M. Masahiro, H. Yujiro, I. Hajme, I. Yoshohiko, Chem. Lett. 27 (1998) 163.
 (c) J. R. Martinelli, D. M. M. Freckmann, S. L. Buchwald, Org. Lett. 8 (2006) 4843.
- [8] C. Veryser, S. V. Mileghem, B. Egle, P. Gilles, W. M. D. Borggraeve, React. Chem. Eng. 1 (2016) 142.
- [9] M. P. Sibi, C. C. Stessman, J. A. Schultz, J. W. Christensen, J. Lu, M. Marvin, Synth. Commun. 25 (1995) 1255.
- [10] M. Keenan, M. J. Abbott, P. W. Alexander, T. Armstrong, W. M. Best, B. Berven, A. Botero, J. H. Chaplin, S. A. Charman, E. Chatelain, T. W. von Geldern, M. Kerfoot, A. Khong, T. Nguyen, J. D. McManus, J. Morizzi, E. Ryan, I. Scandale, R. A. Thompson, S. Z. Wang, K. L. J. White, Med. Chem. 55 (2012) 4189.
- [11] (a) M. Jithunsa, M. Ueda, O. Miyata, Org. Lett. 13 (2011) 518.
 (b) C. W. Miur, A. R. Kennedy, J. M. Redmond, A. J. B. Watson, Org. Biomol. Chem. 11 (2013) 3337.
- [12] R. Ningegowda, S. Bhaskaran, A. M. Sajith, C. Aswathanarayanappa, M. S. A. Padusha, N. S. Shivananju, B. S. Priya, Australian Journal of Chemistry 70 (2016) 44.
- [13] D. Huang, Y. Hu, T. Niu, K. H. Wang, C. Xu, Y. Su, Y. Fu, Synthesis 46 (2014) 320.
- [14] F. -H. Zhang, C. Wang, J. -H. Xie, Q. -L. Zhou, Adv. Synth. Cal. 361 (2019) 2832.
- [15] H. A. Duong, R. E. Gilligan, M. L. Cooke, R. J. Phipps, M. J. Gaunt, Angew. Chem. Int. Ed. 50 (2011) 463.
- [16] J. Gong, S. W. Li, S. Qurban, Q. Kang, European J. Org. Chem. 2017 (2017) 3584.
- [17] (a) K. Sharnabai, G. Nagendra, T. Vishwanatha, V. V. Sureshbabu, Tetrahedron Lett. 54 (2013) 478.
 (b) J. A. Lera, L. M. M. Jenkins, H. Kajiyama, J. B. Kopp, D. H. Appella, Bioorg. Med. Chem.
- Lett. 20 (2010) 6500. [18] G. Wang, U. Mahesh, G. Y. J. Chen, S. Q. Yao, Org. Lett. 5 (2003) 737.
- [19] J. W. Lim, K. H. Kim, H. R. Moon, J. N. Kim, Tetrahedron Lett. 57 (2016) 784.

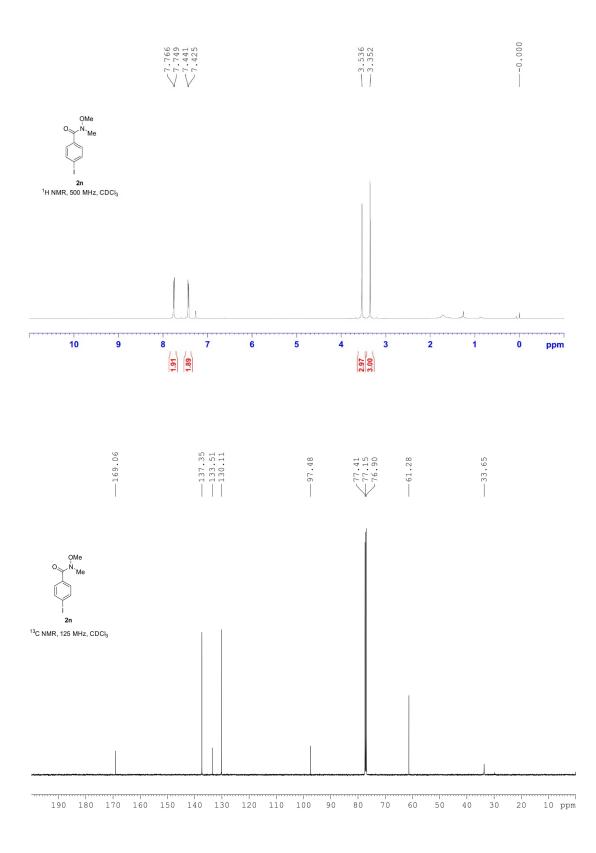


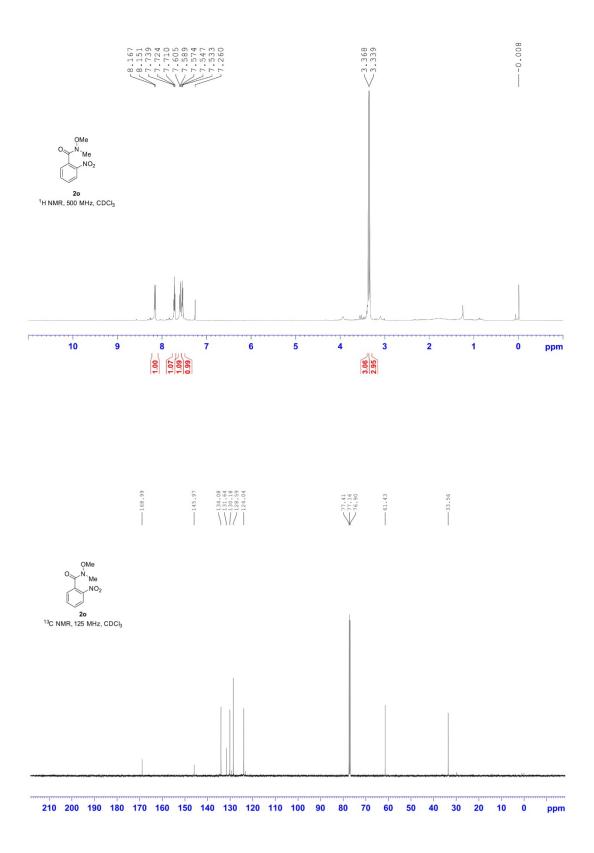


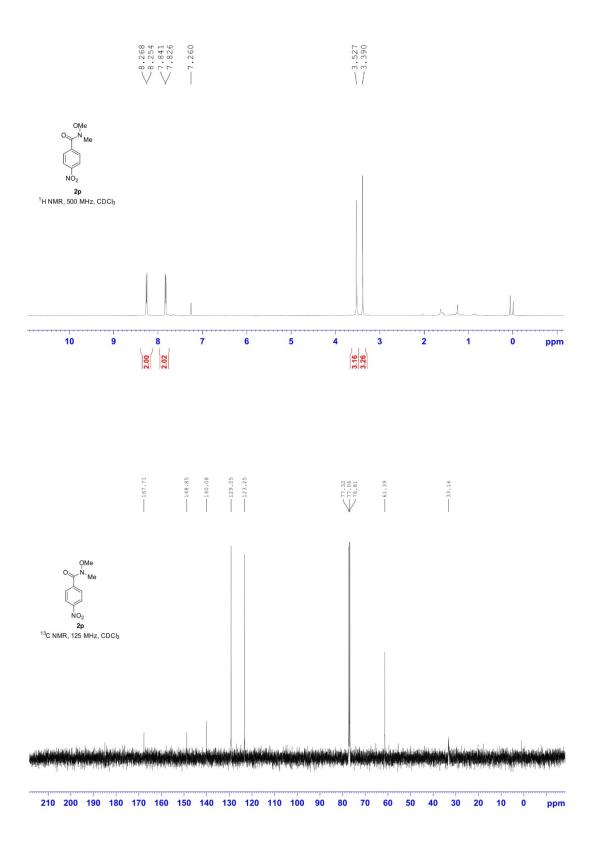


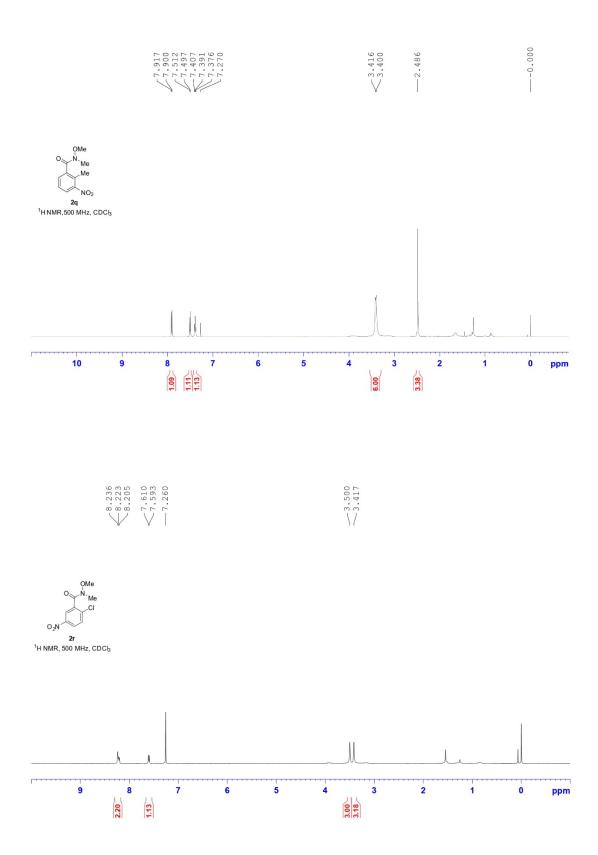


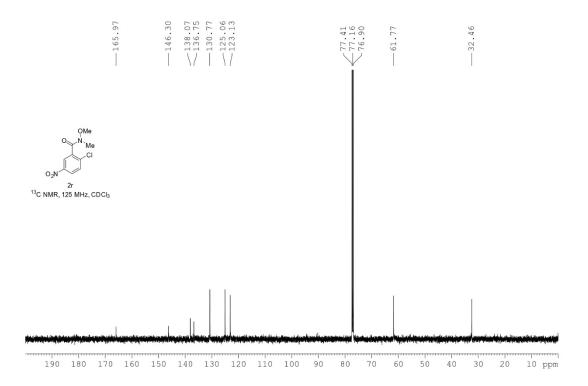

S25

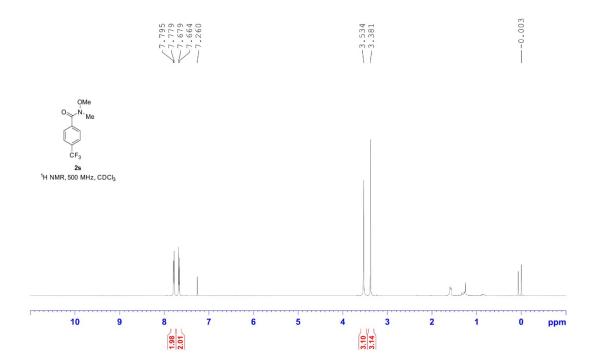


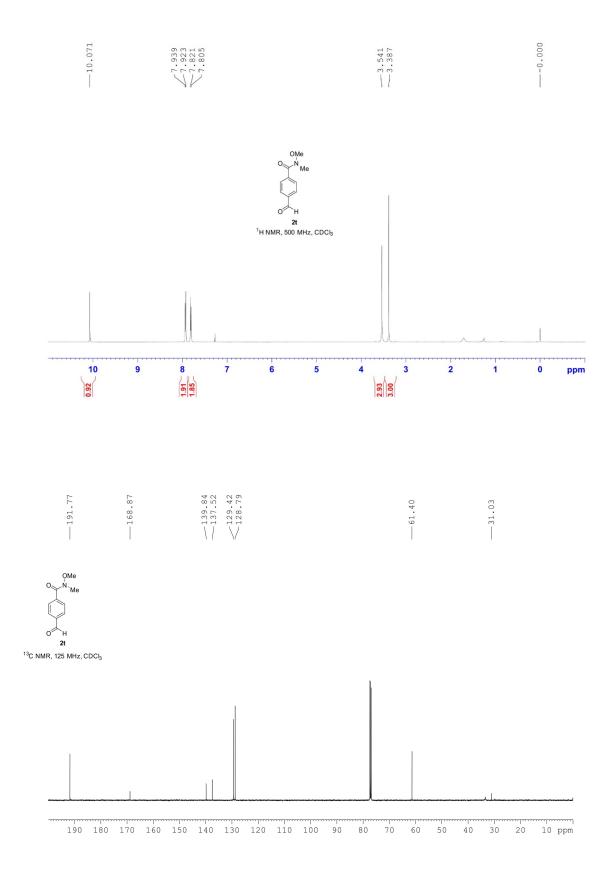


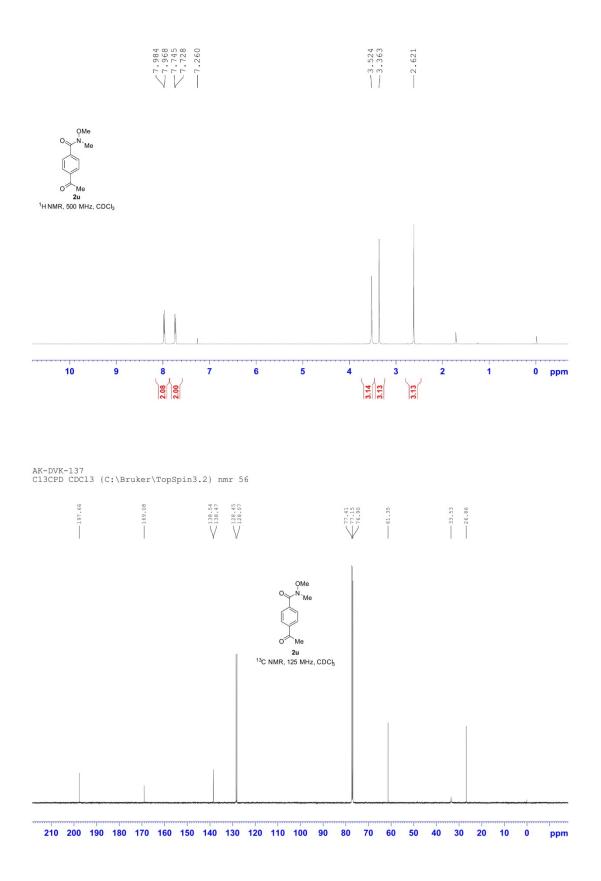


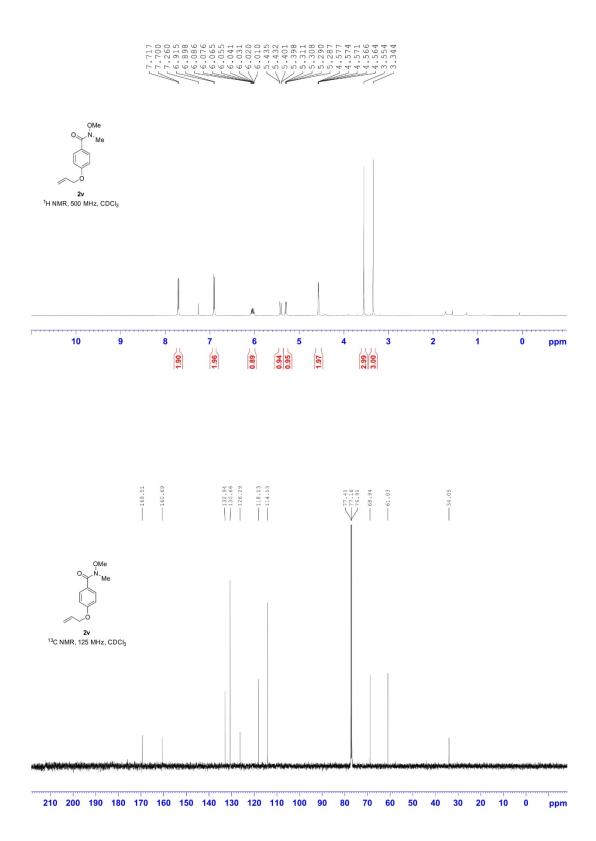


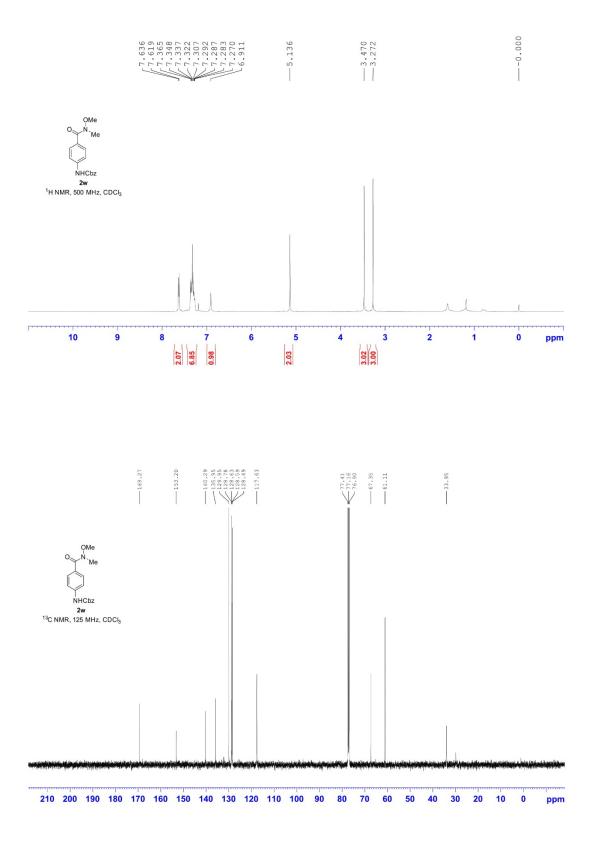


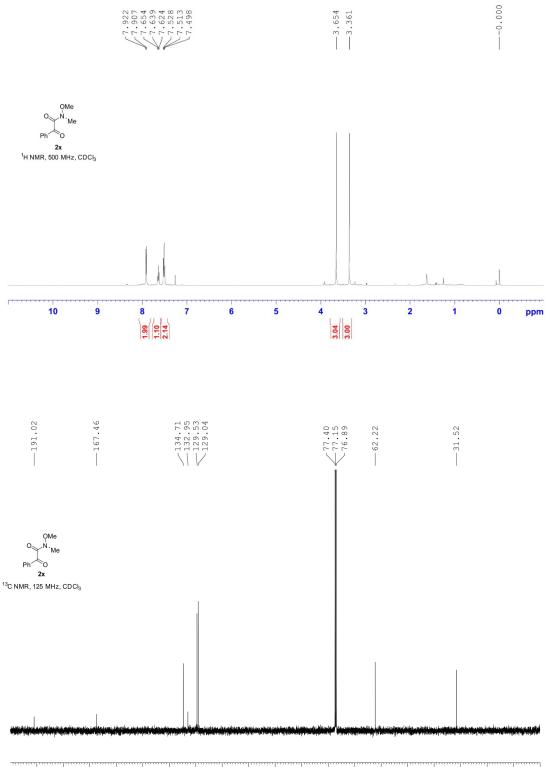


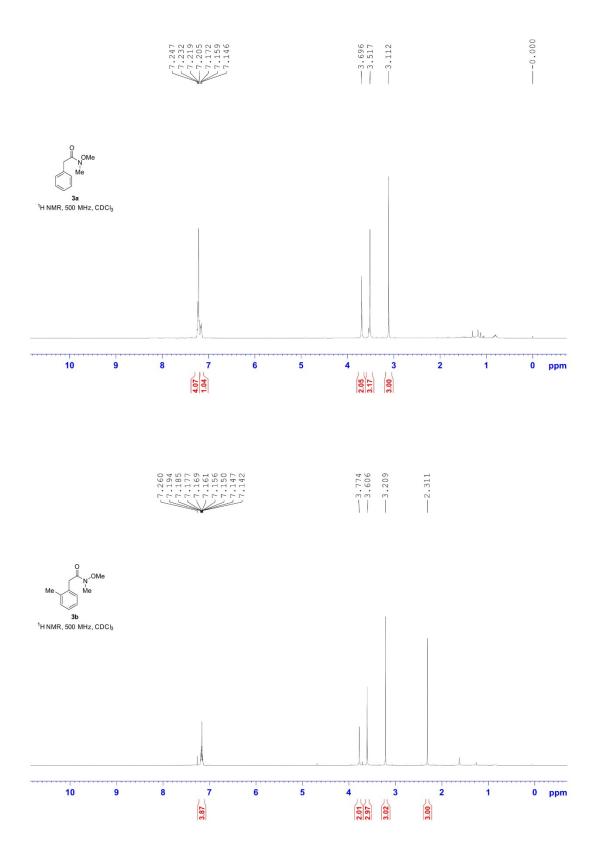


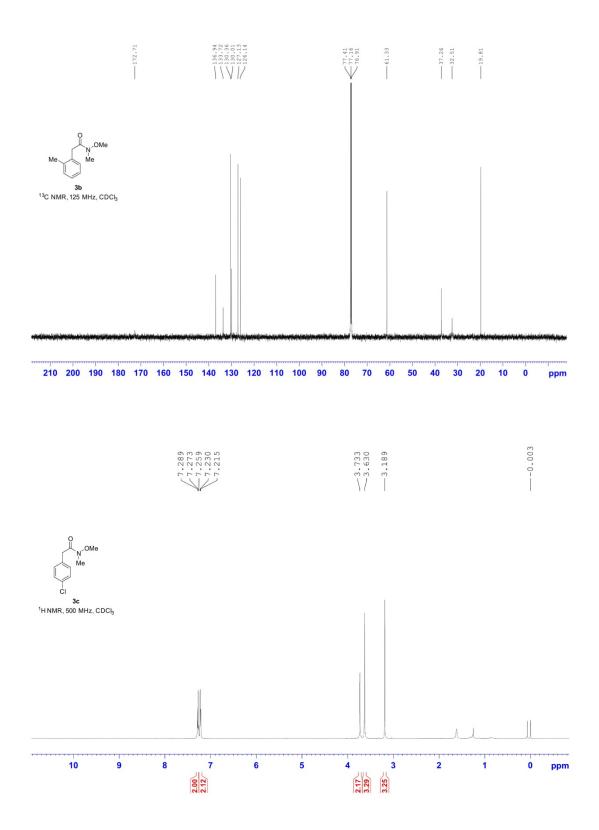


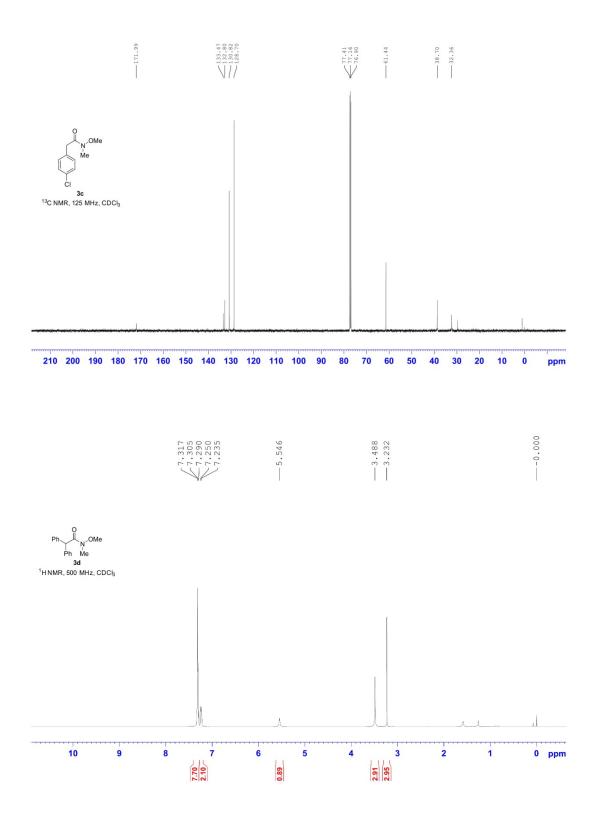


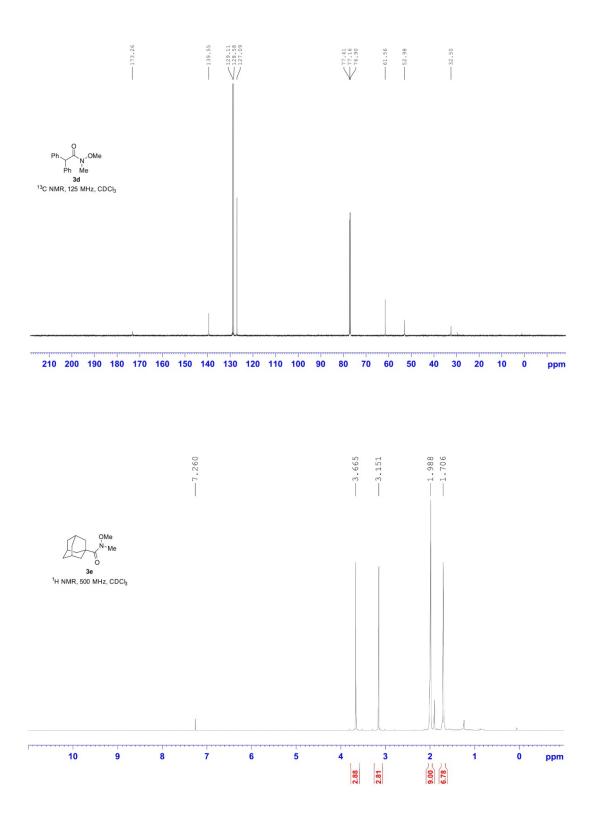





S37







190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 ppm

