Testing for Trends in High-Dimensional Time Series

2018-07-11T14:49:08Z (GMT) by Likai Chen Wei Biao Wu
<p>The article considers statistical inference for trends of high-dimensional time series. Based on a modified <math><mi>L</mi><mn>2</mn></math> distance between parametric and nonparametric trend estimators, we propose a de-diagonalized quadratic form test statistic for testing patterns on trends, such as linear, quadratic, or parallel forms. We develop an asymptotic theory for the test statistic. A Gaussian multiplier testing procedure is proposed and it has an improved finite sample performance. Our testing procedure is applied to a spatial temporal temperature data gathered from various locations across America. A simulation study is also presented to illustrate the performance of our testing method. Supplementary materials for this article are available online.</p>