Taylor & Francis Group
4 files

Considerable pancreatic tumor motion during breath-holding

posted on 2016-09-01, 13:31 authored by Eelco Lens, Astrid van der Horst, Eva Versteijne, Arjan Bel, Geertjan van Tienhoven

Background: Breath-holding (BH) is often used to reduce abdominal organ motion during radiotherapy. However, for inhale BH, abdominal tumor motion during BH has not yet been investigated. The aim of this study was to quantify tumor motion during inhale BH and tumor position variations between consecutive inhale BHs in pancreatic cancer patients.

Material and methods: Twelve patients with intratumoral fiducials were included and asked to perform three consecutive 30-second inhale BHs on each of three measurement days. During BH, lateral fluoroscopic movies were obtained and a two-dimensional (2D) image correlation algorithm was used to track the fiducials and the diaphragm, yielding the tumor and diaphragm motion during each BH. The tumor position variation between consecutive BHs was obtained from the difference in initial tumor position between consecutive BHs on a single measurement day.

Results: We observed tumor motion during BH with a mean absolute maximum displacement over all BHs of 4.2 mm (range 1.0–11.0 mm) in inferior-superior (IS) direction and 2.7 mm (range 0.5–8.0 mm) in anterior-posterior (AP) direction. We found only a moderate correlation between tumor and diaphragm motion in the IS direction (Pearson’s correlation coefficient |r|>0.6 in 45 of 76 BHs). The mean tumor position variation between consecutive BHs was 0.2 [standard deviation (SD) 1.7] mm in the inferior direction and 0.5 (SD 0.8) mm in the anterior direction.

Conclusion: We observed substantial pancreatic tumor motion during BH as well as considerable position variation between consecutive BHs on a single day. We recommend further quantifying these uncertainties before introducing breath-hold during radiation treatment of pancreatic cancer patients. Also, the diaphragm cannot be used as a surrogate for pancreatic tumor motion.