1/1
2 files

The generalized ridge estimator of the inverse covariance matrix

dataset
posted on 11.04.2019, 09:16 by Wessel N. van Wieringen

The ridge inverse covariance estimator is generalized to allow for entry-wise penalization. An efficient algorithm for its evaluation is proposed. Its computational accuracy is benchmarked against implementations of specific cases the generalized ridge inverse covariance estimator encompasses. The proposed estimator shrinks towards a user-specified, non-random target matrix and is shown to be positive definite and consistent. It is pointed out how the generalized ridge inverse covariance estimator can be used to obtain a generalization of the graphical lasso estimator as well as of its elastic net counterpart. The usage of the presented estimator is illustrated in graphical modelling of omics data.

History

Licence

Exports