SUPPLEMENTAL MATERIAL

Characterization of alkaloids in Radix *Sophora tonkinensis* by UPLC-Q-TOF-MS/MS and its application in the comparison of two different habitats

Xing-Xing Zong^a*, Yu Wang^a, Jia-Liang Xiong^a, Yu-Hui Ping^b*, Qiong-Lin Liang^a*

^aDepartment of Chemistry, Tsinghua University, Beijing, 100084, PR China; ^bDepartment of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, China

*Corresponding author. Xing-Xing Zong, Email: jxjjzong@163.com; Yu-Hui Ping, Email: Pingyh@163.com or Qiong-Lin Liang, Email: liangql@tsinghua.edu.cn

ABSTRACT

Sophora tonkinensis is widely used as traditional Chinese medicine for treating the swelling of the gums and tongue and mouth sores due to flame stomach fire. It is mainly origin from Guangxi, Sichuan provinces of China. Alkaloids are considered as the major bioactive components. A method was established for identifying alkaloids in *S. tonkinensis* root by UPLC-Q-TOF-MS/MS and was applied in characterizing alkaloids in *S. tonkinensis* root of two different habitats. Consequently, twenty-four alkaloids including six new compounds were identified in *S. tonkinensis* root. Additionally, the difference of alkaloids in *S. tonkinensis* from Guozhou, Sichuan province was investigated. In the present study, we firstly characterize total alkaloids in *S. tonkinensis* root by UPLC-Q-TOF-MS/MS and firstly established the characteristic fragmentation pathway of alkaloids with hydroxy in *S. tonkinensis* root.

KEYWORDS: UPLC-Q-TOF-MS/MS; Sophora tonkinensis; Alkaloid; Characterization

1. Experimental

1.1. Chemicals, reagents, and materials

UHPLC grade acetonitrile and HPLC grade ammonium acetate were purchased from Sigma-Aldrich Laboratories, Inc. (St. Louis, MO, USA). Deionized water was prepared using a Millipore Milli Q-Plus system (Bedford, MA, USA). The ammonia solution (25% NH₃) for UHPLC was obtained from Merck (Darmstadt, Germany). The chloroform, methanol and ammonia solution (25% NH₃) used was of AR grade supplied by Beijing Chemical Reagent Factory (Beijing, People's Republic of China).

The reference compounds (matrine, matrine *N*-oxide, sophoranol, 14 β -hydroxymatrine, 9 α -hydroxymatrine, cytisine) were separated and purified in our lab. The purity of all compounds is more than 95% (determined by HPLC). The structures are confirmed by their UV, MS, ¹H NMR and ¹³C NMR data compared with the data from literatures. Two herbal materials were respectively collected from Guozhou, Sichuan province and Yizhou, Guangxi province, then dried in the sun. Two plant species were identified by the authors, and a voucher specimen (No. SL20160908, No. SL2016011021) were deposited in the author's laboratory.

1.2. Sample preparation

An amount of 1.0 g of *S. tonkinensis* root powder (sieved through 40 mesh) were added 25 ml of chloroform containing 1% ammonia water (25% NH₃), and soaked it overnight. Then it was ultrasonicated for 60 min, and filtrated extracting solution. After cleaning the residue 3 times, combine the filtrate. The solvent was recovered and the extract was concentrated to dry. The residue was dissolved with methanol transferring to a 50 mL volumetric flask and fixed volume with methanol. The solution was filtered using 0.22 μ m microporous membrane discarding the primary filtrate and taking the continuous filtrate to obtain the test sample. Finally, the samples were stored in a refrigerator at 4°C.

1.3. UHPLC-Q TOF MS analysis

All analyses were performed on an Agilent 1290 Infinity UHPLC Coupled to an Agilent 6550 iFunnel Q-TOF LC/MS System (Agilent Technologies, Santa Clara, CA, USA). An Agilent Eclipse Plus C18 column (100×2.1 mm, 1.8 μ m, Agilent Technologies, Santa Clara, CA, USA) was used for separation with gradient elution of aqueous solution (A) and acetonitrile (B). The aqueous solution (A) was added 5 mmol/L ammonium acetate, and then adjust the aqueous solution (A) pH to 8. The detailed gradient conditions are: 0–5 min, 5–12% B; 5–8 min, 12–20% B; 8–12 min, 20–30% B; 12–20 min, 30–60% B; then cleaning the column with 100% B for 5 min and finally, reconditioning the column with 5% B isocratic for 5 min. The flow rate was 0.2 mL/min and the injection volume was 1 μ L. The column temperature was maintained at 25 °C.

An Agilent 6550 iFunnel Q-TOF LC/MS System was used in positive ion modes coupled with electrospray ionization source (ESI). The mass spectrometer was operating at the following parameters: dry gas (N₂) flow rate, 10 L/min; dry gas temperature, 205 °C; spray voltage, 200 V; capillary voltage, 3.5 kV. Auto MS/MS mode was used to obtain MS² data. The most intensive three ions from each TOF-MS scan were selected as AUTO MS/MS fragmentation precursor ions. Collision

Energy was set to 30 V. Data was acquired on the profile mode. The LC-MS/MS data was controlled and analyzed by Agilent MassHunter workstation Software B.06.00 Build 633.0 software.

2. Fragment rules of reference compounds

The ESI-MS² behaviours of reference standards including matrine, N-oxidematrine, sophoranol, 9α hydroxymatrine, 14β -hydroxymatrine and cytisine were investigated. Matrine showed ion peaks at m/z 247 ([M+H-2H]⁺), 176 ([M+H-C₂H₇N-C₂H₄]⁺), 148 ([M+H-C₂H₇N-C₂H₄-CO]⁺), 134 ([M+H-C₂H₇N-C₂H₄-CO]⁺), 134 ([M+H-C₂H₇N-C₂H₄-CO]⁺), 134 ([M+H-C₂H₇N-C₂H₄-CO]⁺), 134 ([M+H-C₂H₇N-C₂H₄-CO]⁺), 134 ([M+H-C₂H₇N-C₂H₄-CO]⁺), 134 ([M+H-C₂H₇N-CO]⁺), 134 ([M+H-C₂H₇N-CO]⁺), 134 ([M+H-C₂H₇N-CO]⁺), 134 ([M+H-C₂H₇N-CO]⁺), 134 ([M+H-C₂H₇N-CO]⁺), 134 ([M+H-C₂H₇N-CO]⁺), 134 ([M+H-CO]⁺), 13 C₂H₄-CO-CH₂]⁺), 120 ([M+H-C₂H₇N-C₂H₄-CO-C₂H₄]⁺), *m/z* 150 ([M+H-C₄H₆O-CH₃N]⁺), 136 ([M+H-C₄H₆O-CH₃N]⁺), C_2H_5N ⁺), 122 ([M+H-C₄H₆O-C₃H₇N]⁺) and the ion peaks of matrine at *m/z* 176, 150, 148 were as main ion peaks in MS^2 spectrum (Figure S2). The N-oxidematrine has intense ion peaks at m/z 247 ([M+H-H₂O]⁺), 205 ([M+H-H₂O-C₃H₆]⁺), 150 ([M+H-H₂O-C₄H₆O-CHN]⁺), 148 ([M+H-H₂O-C₂H₅N-C₂H₄-CO]⁺), 136 $([M+H-H_2O-C_4H_6O-C_2H_3N]^+)$ and other small ion peak at m/z 176 $([M+H-H_2O-C_2H_5N-C_2H_4]^+)$, 122 $([M+H-H_2O-C_4H_6O-C_3H_5N]^+)$ in MS² spectrum (Figure S3). Intense neutral loss of C₃H₆ and H₂O was characteristic for N-oxidematrine. Meanwhile, N-oxidematrine could not showed ion peaks at m/z263 [M+H-2H]⁺. Matrine-type alkaloids have hydroxyl substitution, which is at positions 5, 9, and 14. These compounds all exhibited [M+H-2H]⁺ fragment ions in MS² spectra. Sophoranol exhibited intense ion peaks at m/z 150 ([M+H-H₂O-C₄H₆O-CHN]⁺), 148 ([M+H-H₂O-C₂H₅N-C₂H₄-CO]⁺), 122 $([M+H-H_2O-C_4H_6O-C_3H_5N]^{\dagger})$, 112 $([C_6H_{10}NO]^{\dagger})$ and other small ion peak at m/z 247 $([M+H-H_2O]^{\dagger})$, 176 $([M+H-H_2O-C_2H_5N-C_2H_4]^{\dagger})$ (Figure S4). Therefore, a peak at m/z 112 $([C_6H_{10}NO]^{\dagger})$ and neutral loss of H_2O was characteristic fragmentation behaviors for a hydroxyl substitution at C₅. 9 α -hydroxymatrine exhibited intense ion peaks at m/z 247 ([M+H-H₂O]⁺), 219 ([M+H-H₂O-CO]⁺), 150 ([M+H-H₂O-C₄H₆O- $(\text{CHN}]^{+}$), 148 ($(\text{M}+\text{H}+\text{H}_2\text{O}-\text{CO}-\text{C}_2\text{H}_5\text{N}-\text{C}_2\text{H}_4)^{+}$), and other small ion peak at m/z 136 ($(\text{M}+\text{H}-\text{H}_2\text{O}-\text{C}_4\text{H}_6\text{O}-\text{C}_4\text$ C_2H_3N]⁺), 122 ([M+H-H₂O-C₄H₆O-C₃H₅N]⁺) on so on (Figure S5). It was obvious that neutral loss of CO was characteristic fragmentation behaviors for a hydroxyl substitution at C₉. However, 14β hydroxymatrine was observed fragmentation ions at m/z 150.1272 ([M+H-C₂H₅NO-C₂H₄-CO]⁺), 152.1427 ([M+H-C₄H₆O-CHNO]⁺), which was characteristic fragmentation behaviors for a hydroxyl substitution at C₁₄ (Figure S6). Cytisine have intense ion peaks at m/z 148 ([M+H-C₂H₅N]⁺), and weak ion peaks m/z 174 ([M+H-H₃N]⁺), 162 ([M+H-CH₃N]⁺), 160 ([M+H-CH₅N]⁺), 146 ([M+H-C₂H₇N]⁺) in MS² spectrum. It was indicated that these fragmentation ions come from N ring split (Figure S7). The possible fragmentation pathways of reference compounds were showed in Figure S8-S13.

According to reference reported (Liu et al. 2011; Wu et al. 2013), sophocarpine displayed ion peaks at m/z 245, 179, 176, 150, 148, 136, 134, 122, 120 which were considered as fragment ions $[M+H-2H]^+$, $[M+H-C_4H_4O]^+$, $[M+H-C_2H_5N-C_2H_4]^+$, $[M+H-C_4H_4O-CH_3N]^+$, $[M+H-C_2H_5N-C_2H_4-CO]^+$, $[M+H-C_4H_4O-C_3H_7N]^+$, $[M+H-C_2H_5N-C_2H_4-CO-C_2H_4]^+$ respectively. The peaks of m/z 176, 148, 122 were puniness, but m/z 179, 150, 136, 122 were intense. Therefore, the main fragmentation behaviors were the undergoes RDA reaction and then neutral losses of C_2H_5N and CH_3N for sophocarpine.

3. Characterization of compounds

Compounds **12**, **21**, **26**, **29**, and **31** was designated as *N*-oxidematrine, sophoranol, 9α -hydroxymatrine, 14β -hydroxymatrine, and matrine by comparing with reference compound. Compound **7** gave the molecular as $C_{17}H_{26}N_2O_3$ and showed main fragment ion peaks at m/z 247 ($[M+H-C_2H_4O_2]^+$), 176, 150, and 148. These fragment ions were similar with matrine-type alkaloid except $[M+H-C_2H_4O_2]^+$ fragment ion. Combining with reporting alkaloids, compound **7** was proposed as 14 β -acetomatrine. Compound **30** gave the molecular as $C_{16}H_{23}N_3O$ and fragment ions were similar with 9 α -hydroxymatrine except $[M+H-CHN]^+$ fragment ion, but not $[M+H-H_2O]^+$ fragment ion. Compound **30** was proposed as 9 α -cyanomatrine. Compound **28** was determined as sophoridine on base of reference reported data (Wu et al. 2013).

Compounds 5, 9, 14, 18, and 24 all gave the protonated molecular ion at m/z 281.1860. Their formulae more O_2 than matrine. Compounds **5**, **9**, and **14** did not exhibited $[M+H-2H]^+$ fragment ions, meanwhile had high abundance $[M+H-H_2O]^+$ fragment ions in their MS² spectra. Therefore, these compounds were *N*-oxide alkaloid. Compound **5** exhibited base peak of fragment ion at m/z 245 ([M+H-2H₂O]⁺) and characteristic [C₆H₁₀NO]⁺ fragment ion in MS² spectrum. Therefore, compound 5 was characterized as N-oxidesophoranol. Neutral losses of CO were observed such as fragment ions at *m/z* 193.1663 ([M+H-H₂O-C₃H₆-CO]⁺), 235.1737 ([M+H-H₂O-CO]⁺) compare compound **9** with *N*-oxidematrine. Therefore, compound **9** was characterized as 9α hydroxy-N-oxidematrine. Compound 14 exhibited peaks at m/z 152.1425, 150.1271 which were characteristic fragmentation behaviors for a hydroxyl substitution at C14. Therefore, compound 14 was characterized as 14β -hydroxy-*N*-oxidematrine. The compound **18**, **24** exhibited $[M+H-2H]^+$ and $[M+H-H_2O]^+$ fragment ions in their MS² spectra. Therefore, these compounds were dihydroxymatrine-type alkaloid. Neutral losse of CO was observed such as fragment ions at m/z217.1683 ([M+H-H₂O-CO]⁺) in MS² spectrum of compound **18**. It was indicated that compound **18** was present a hydroxyl substitution at C9. Meanwhile, compound 18 exhibited characteristic $[C_6H_{10}NO]^+$ fragment ion. Thus, another hydroxyl substitution of compound **18** was at C₅. Therefore, compound **18** was characterized as 5α , 9α -dihydroxymatrine. Fragmentation behaviour of compound **24** was similar with 14β -hydroxymatrine except the peaks of fragment ion at m/z 263 $([M+H-H_2O]^{\dagger})$, 235 $([M+H-H_2O-CO]^{\dagger})$ were observed. Therefore, compound **24** was characterized as 9α , 14 β -dihydroxymatrine.

The formulae of compound **32** was suggested as $C_{15}H_{22}N_2O$ on the basis of the protonated molecular ion. It also given main ion peaks at m/z 247.1809 ([M+H]⁺), 245.1644 ([M+H-2H]⁺), 179.1537 ([M+H-C₄H₄O]⁺), 150 ([M+H-C₄H₄O-CH₃N]⁺), 136 ([M+H-C₄H₄O-C₂H₅N]⁺) in MS² spectrum. It was agreement with reference reported data of sophocarpine (Wu et al. 2013). The compounds 13, 20, 25 were suggested for formulae as $C_{15}H_{22}N_2O_2$. The compound 13 exhibited base ion peak at m/z245 ($[M+H-H_2O]^{\dagger}$). Thus, it is proposed that the N of this compound links to the O atom. Other ion peaks were at $m/z 203 ([M+H-H_2O-C_3H_6]^{\dagger}), 177 ([M+H-H_2O-C_4H_4O]^{\dagger}), 150 ([M+H-H_2O-C_4H_4O-CH_3N]^{\dagger}), 150 ([M+H-H_2O-C_4H_4O-CH_3N]^{\dagger}), 177 ([M+H-H_2O-C_4H_4O]^{\dagger}), 150 ($ 136, 177 ($[M+H-H_2O-C_4H_4O-C_2H_5N]^{\dagger}$). The compound **13** was determined as *N*-oxidesophocarpine. The compound **20** exhibited intense ion peak at m/z 245 ($[M+H-H_2O]^+$) and other ion peak at m/z195 ([M+H-C₄H₄O][†]), 177 ([M+H-H₂O-C₄H₄O][†]), 150 ([M+H-H₂O-C₄H₄O-CH₃N][†]), 112 ([C₆H₁₀NO][†]). The compound **20** was considered as 5α -hydroxysophocarpine. The compound **25** exhibited puniness ion peak at m/z 245 ([M+H-H₂O]⁺), 235 ([M+H-CO]⁺), 164 ([M+H-CO-C₂H₅N-C₂H₄]⁺) and base ion peak at m/z 148 ([M+H-H₂O-C₄H₄O-CH₃N]⁺). The compound **25** was speculated as 9 α -hydroxysophocarpine. Compound **3** showed a tense peak of losing H_2O from the molecular ion. Compound **3** was suggested as 9 α -hydroxy-N-oxidesophocarpine on base of comparison fragment ions and formula with compound 25.

Compound **11** was identified as cytisine by comparing with reference standard. Compound **8** was considered as *N*-formylcytisine on account of it could produce one more $[M+H-CO]^+$ fragment ion compares with cytisine and molecular formulas. For the same, compound **10**, **27** produced one more $[M+H-C_6H_{10}NO]^+$, $[M+H-C_2H_2O]^+$ fragment ion respectively. Therefore, they were identified as *N*-acetylcytisine, *N*-hexanoylcytisine. Combining with reported alkaloids, compound **15** have similar fragment ion with cytisine except have more $[M+H-C_6H_{10}O_5]^+$, $[M+H-H_2O]^+$, $[M+H-2H_2O]^+$, $[M+H-3H_2O]^+$ fragment ion. Thus, it was characterized as *N*-gulcytisine. Compound **19** gave molecular formulas as $C_{12}H_{16}N_2O$. The formulae of compound **19** were more CH_3 than cytisine, and it exhibited more $[M+H-C_2H_5N]^+$, $[M+H-C_3H_9N]^+$ fragment ion compares with cytisine. Compound **19** determined as *N*-methylcytisine.

Reference

- Liu G, Dong J, Wang H, Hashi Y, Chen S. 2011. Characterization of alkaloids in *Sophora flavescens* Ait. by high-performance liquid chromatography–electrospray ionization tandem mass spectrometry. J Pharm Biomed Anal. 54(5):1065-1072.
- Wu ZJ, Sun DM, Fang DM, Chen JZ, Cheng P, Zhang GL. 2013. Analysis of matrine-type alkaloids using ESI-QTOF. Int J Mass Spectrom. 341:28-33.

Legends for figures and table:

Figure S1. The reported alkaloids from S. tonkinensis rootP8
Figure S2. The MS ² spectrum of matrineP9
Figure S3. The MS ² spectrum of N-oxidematrine
Figure S4. The MS ² spectrum of sophoranolP10
Figure S5. The MS ² spectrum of 9α -hydroxymatrineP10
Figure S6. The MS^2 spectrum of 14β -hydroxymatrineP11
Figure S7. The MS ² spectrum of cytisineP11
Figure S8. Possible fragmentation pathway of matrineP12
Figure S9. Possible fragmentation pathway of N-oxidematrine
Figure S10. Possible fragmentation pathway of sophoranolP14
Figure S11. Possible fragmentation pathway of 9α -hydroxymatrineP15
Figure S12. Possible fragmentation pathway of 14α -hydroxymatrineP16
Figure S13. Possible fragmentation pathway of cytisineP17
Figure S14. The total ion chromatogram in positive mode for Radix Sophora Tonkinensis: (red) Guozhou, Sichuan province; (black) Yizhou, Guangxi province
Table S1. Accurate m/z , fragment ions of analytes using UHPLC-QTOF-MS from S. tonkinensis root

matine R₁=H, R₂=H, R₃=H 14 β -hydroxymatrine R₁=H, R₂=H, R₃=OH 5 α -hydroxymatrine R₁=OH, R₂=H, R₃=H 9 α -hydroxymatrine P₁=H, P₂=OH, P₃=H 14 β -acetomatrine R₁=H, R₂=H, R₃=OCOCH₃

sophocarpine R_1 =H, R_2 =H 5 α -hydroxysophocarpine R_1 =OH, R_2 =H

sophoridine

N-oxidematine R_1 =H, R_2 =H, R_3 =H 14 β -hydroxy-*N*-oxidematine R_1 =H, R_2 =H, R_3 =OH 5 α -hydroxy-*N*-oxidematine R_1 =OH, R_2 =H, R_3 =H

N-oxidesophocarpine R=H 5α -hydroxy-*N*-oxidesophocarpine R=OH

cytisine R=H N-methylcytisine R=CH₃ N-formylcytisine R=CHO N-hexanoylcytisine R=C₆H₁₁O

Figure S2. The MS² spectrum of matrine

Figure S3. The MS² spectrum of *N*-oxidematrine

Figure S4. The MS² spectrum of sophoranol

Figure S5. The MS^2 spectrum of 9α -hydroxymatrine

Figure S6. The MS² spectrum of 14β -hydroxymatrine

Figure S7. The MS² spectrum of cytisine

Figure S8. Possible fragmentation pathway of matrine

Figure S9. Possible fragmentation pathway of N-oxidematrine

Figure S10. Possible fragmentation pathway of sophoranol

Figure S11. Possible fragmentation pathway of 9α -hydroxymatrine

Figure S12. Possible fragmentation pathway of 14α -hydroxymatrine

Figure S13. Possible fragmentation pathway of cytisine

Figure S14. The total ion chromatogram in positive mode for Radix Sophora Tonkinensis: (red) Guozhou, Sichuan province; (black) Yizhou, Guangxi province

Table S1. Accurate *m/z*, fragment ions of analytes using UHPLC-QTOF-MS from *S. tonkinensis* root

Compound	RT (min Formula)		m/z ([M+H] ⁺)		Frror		
No		Formula	Experimental	Theoretical	(ppm)	Fragment ion	Identification
1	1.38	$C_{15}H_{26}N_2O_4$	299.1973	299.1965	-2.42	281.1870,263.1793,253.1550,240.1458,239.1410,223. 1775,168.1386,150.1274,138.1285,122.0969,110.097 0	unidentifed
2	3.09	$C_{15}H_{27}N_{3}O_{3} \\$	298.2124	298.2125	1.03	280.2048,223.1812,205.1276,168.1385,150.1284,138. 1274,112.0944	unidentified
3	3.42	$C_{15}H_{22}N_2O_3$	279.1704	279.1703	-0.35	261.1603,243.1493,215.1177,175.1228,110.0605	9 <i>a</i> -hydroxy- <i>N</i> -oxideso phocarpine
4	3.92	$C_{15}H_{24}N_{2}O_{3} \\$	281.1862	281.1860	0.08	263.1755,235.1794,221.1280,193.1663,177.1386,150. 1258,136.1123,122.0974	unidentified
5	4.27	$C_{15}H_{24}N_{2}O_{3} \\$	281.1865	281.1860	-1.40	263.1747,245.1650,247.1780,235.1756,218.1436,204. 1288,180.1011,112.0755	N-oxidesophoranol
6	5.21	$C_{15}H_{24}N_{2}O_{3} \\$	281.1858	281.1860	0.6	263.1763,261.1548,245.1605,243.1454,204.1356,188. 1075,166.1210,164.1052,148.1099,1120765	unidentifed
7	5.35	$C_{17}H_{26}N_{2}O_{3} \\$	307.2022	307.2016	-1.45	247.1788,176.1056,150.1269,148.1109,112.0746	14β -acetomatrine
8	5.62	$C_{12}H_{14}N_2O_2$	219.1130	219.1128	-0.51	160.0746,148.0743,146.0599,117.0571	N-formylcytisine
9	5.92	$C_{15}H_{24}N_{2}O_{3} \\$	281.1862	281.1860	-0.72	263.1755,235.1737,221.1280,193.1639,150.1258,148. 1118,136.1121	9α-hydroxy-N-oxidem atrine
10	6.96	$C_{13}H_{16}N_{2}O_{2} \\$	233.1282	233.1284	1.1	191.1156,160.0712,148.0755,133.0532,117.0590	N-acetylcytisine
11	7.99	$C_{11}H_{14}N_2O$	191.1182	191.1179	-2.1	162.0931,148.0755,146.0603,133.0518	cytisine
12	8.09	$C_{15}H_{24}N_2O_2$	265.1920	265.1911	-0.6	247.1795,205.1325,150.1258,148.1107,136.1110	N-oxidematrine
13	9.28	$C_{15}H_{22}N_2O_2$	263.1761	263.1754	-2.11	245.1639,203.1171,177.1378,160.0751,150.1264,136. 1112,122.0947	N-oxidesophocarpine
14	9.48	$C_{15}H_{24}N_{2}O_{3} \\$	281.1862	281.1860	-0.36	263.1752,235.1469,222.1360,152.1425,150.1271,138. 1271,124.1111,110.0966	14 β -hydroxy- <i>N</i> -oxide matrine
15	9.96	$C_{17}H_{24}N_2O_6\\$	353.1707	253.1707	0.98	335.1611,317.1484,299.1388,256.0976,203.1178,191. 1172,170.0810,148.0748	N-gulcytisine
16	10.51	$C_{12}H_{20}N_{2}O_{2} \\$	225.1604	225.1598	-0.50	166.1222,148.1109,136.1114,120.0799,110.0957	unidentified
17	12.72	$C_{15}H_{24}N_{2}O_{2} \\$	265.1916	265.1911	-1.32	263.1761,245.1669,205.1368,188.1105,176.1067, 166 .1212,164.1069	unidentified
18	12.85	$C_{15}H_{24}N_{2}O_{3} \\$	281.1862	281.1860	-0.36	263.1742,245.1643,235.1805,217.1683,150.1267,148. 1111,122.0959,100.0753	5 <i>a</i> ,9 <i>a</i> -dihydroxymatri ne
19	13.55	$C_{12}H_{16}N_2O$	205.1341	205.1335	-2.41	162.0911,146.0604,133.0516,117.0557,104.0473	N-methylcytisine
20	14.36	$C_{15}H_{22}N_{2}O_{2} \\$	263.1750	263.1754	0.95	245.1647,195.1486,177.1377,150.1271,134.0954,122. 0959,112.0754	5 <i>a</i> -hydroxysophocarpi ne
21	15.30	$C_{15}H_{24}N_{2}O_{2} \\$	265.1914	265.1911	-1.03	$247.1797, 245.1643, 188.1437, 176.1068, 150.1264, 148.\\ 1109, 122.0955, 112.0750$	sophoranol
22	16.15	$C_{15}H_{24}N_{2}O_{2} \\$	265.1914	265.1911	-0.34	247.1795,179.1532,148.1108,136.1111	unidentified
23	16.85	$C_{16}H_{23}N_{3}O_{2} \\$	290.1862	290.1862	0.36	243.1461,217.0956,189.0996,174.0896,172.0724,160. 0747,146.0604,100.0757	unidentified
24	17.20	$C_{15}H_{24}N_2O_3$	281.1859	281.1860	0.25	263.1767,235.1805,179.1509,152.1422,150.1276,138. 1292	9α , 14 β -dihydroxymatr ine
25	17.67	$C_{15}H_{22}N_2O_2$	263.1747	263.1754	2.69	235.1811,217.1670,164.1053,148.1117,146.0942	9 <i>a</i> -hydroxysophocarpi ne
26	17.90	$C_{15}H_{24}N_{2}O_{2} \\$	265.1911	265.1911	0.16	263.1757,247.1804,219.1851,150.1276,148.1119	9α -hydroxymatrine
27	18.33	$C_{17}H_{24}N_2O_2 \\$	289.1914	289.1911	-0.81	191.1175,160.0759,148.0756,120.0807	N-hexanoylcytisine
28	18.44	$C_{15}H_{24}N_2O$	249.1959	249.1961	1.28	220.1700,196.9642,176.1063,152.1422,120.0821	sophoridine

29	18.63	$C_{15}H_{24}N_2O_2$	265.1914	265.1911	-0.9	263.1738,152.1427,150.1272,138.1270,124.1120,122. 0964,110.0963	14β-hydroxymatrine
30	19.05	$C_{16}H_{233}O$	274.1913	274.1914	0.68	247.1800,177.1369,150.1279,122.0958	9 <i>a</i> -cyanomatrine
31	19.25	$C_{15}H_{24}N_2O$	249.1966	249.1961	-1.54	247.1810,190.1229,176.1102,150.1263,148.1110	matrine
32	19.58	C ₁₅ H ₂₂ N ₂ O	247.1809	247.1805	-1.31	245.1650,245.1796,179.1536,176.1078,150.1264,148. 1113,136.1115,108.0799	sophocarpine