Taylor & Francis Group
Browse
tbsd_a_2310788_sm9821.docx (739.65 kB)

Computational investigation on the conformational dynamics of C-terminal truncated α-synuclein bound to membrane

Download (739.65 kB)
journal contribution
posted on 2024-02-07, 08:20 authored by Dorothy Das, Venkata Satish Kumar Mattaparthi

Accelerated progression rates in Parkinson’s disease (PD) have been linked to C-terminal domain (CTD) truncations of monomeric α-Synuclein (α-Syn), which have been suggested to increase amyloid aggregation in vivo and in vitro. In the brain of PD patients, CTD truncated α-Syn was found to have lower cell viability and tends to increase in the formation of fibrils. The CTD of α-Syn acts as a guard for regulating the normal functioning of α-Syn. The absence of the CTD may allow the N-terminal of α-Syn to interact with the membrane thereby affecting the normal functioning of α-Syn, and all of which will affect the etiology of PD. In this study, the conformational dynamics of CTD truncated α-Syn (1–99 and 1–108) monomers and their effect on the protein–membrane interactions were demonstrated using the all-atom molecular dynamics (MD) simulation method. From the MD analyses, it was noticed that among the two truncated monomers, α-Syn (1–108) was found to be more stable, shows rigidness at the N-terminal region and contains a significant number of intermolecular hydrogen bonds between the non-amyloid β-component (NAC) region and membrane, and lesser number of extended strands. Further, the bending angle in the N-terminal domain was found to be lesser in the α-Syn (1–108) in comparison with the α-Syn (1–99). Our findings suggest that the truncation on the CTD of α-Syn affects its interaction with the membrane and subsequently has an impact on the aggregation.

Communicated by Ramaswamy H. Sarma

Funding

The author(s) reported there is no funding associated with the work featured in this article.

History