Taylor & Francis Group
Browse
ixen_a_1580403_sm7202.docx (214.19 kB)

Enzymatic analysis of glucuronidation of synthetic cannabinoid 1-naphthyl 1-(4-fluorobenzyl)-1H-indole-3-carboxylate (FDU-PB-22)

Download (214.19 kB)
journal contribution
posted on 2019-03-20, 07:33 authored by Sabrina Jones, Azure L. Yarbrough, Amal Shoeib, John M. Bush, William E. Fantegrossi, Paul L. Prather, Anna Radominska-Pandya, Ryoichi Fujiwara

Recently, there has been a rise in abuse of synthetic cannabinoids (SCBs). The consumption of SCBs results in various effects and can induce toxic reactions, including paranoia, seizures, tachycardia and even death. 1-Naphthyl 1-(4-fluorobenzyl)-1H-indole-3-carboxylate (FDU-PB-22) is a third generation SCB whose metabolic pathway has not been fully characterized.

In this study, we conducted in vitro pharmacokinetic analysis of FDU-PB-22 metabolism.

Metabolic reactions containing FDU-PB-22 and human liver microsomes (HLMs) were independent of NADPH but not UDP-glucuronic acid (UDPGA), suggesting that UDP-glucuronosyltransferases (UGTs) are the primary enzymes involved in this metabolism. It was further determined that the metabolite extensively formed after incubating FDU-PB-22 with UDPGA in HLMs was the glucuronide of FDU-PB-22 3-carboxyindole (FBI-COOH). Various hepatic UGTs showed enzymatic activity for FBI-COOH. A series of UGT inhibitors showed moderate to strong inhibition of FBI-COOH-glucuronidation in HLMs, suggesting that multiple UGT isoforms are involved in FBI-COOH-glucuronidation in the liver. Interestingly, an extra-hepatic isoform, UGT1A10, exhibited the highest activity with a Km value of 38 µM and a Vmax value of 5.90 nmol/min/mg.

Collectively, these results suggest that both genetic mutations of and the co-administration of inhibitors for FDU-PB-22-metabolizing UGTs will likely increase the risk of FDU-PB-22-induced toxicity.

Recently, there has been a rise in abuse of synthetic cannabinoids (SCBs). The consumption of SCBs results in various effects and can induce toxic reactions, including paranoia, seizures, tachycardia and even death. 1-Naphthyl 1-(4-fluorobenzyl)-1H-indole-3-carboxylate (FDU-PB-22) is a third generation SCB whose metabolic pathway has not been fully characterized.

In this study, we conducted in vitro pharmacokinetic analysis of FDU-PB-22 metabolism.

Metabolic reactions containing FDU-PB-22 and human liver microsomes (HLMs) were independent of NADPH but not UDP-glucuronic acid (UDPGA), suggesting that UDP-glucuronosyltransferases (UGTs) are the primary enzymes involved in this metabolism. It was further determined that the metabolite extensively formed after incubating FDU-PB-22 with UDPGA in HLMs was the glucuronide of FDU-PB-22 3-carboxyindole (FBI-COOH). Various hepatic UGTs showed enzymatic activity for FBI-COOH. A series of UGT inhibitors showed moderate to strong inhibition of FBI-COOH-glucuronidation in HLMs, suggesting that multiple UGT isoforms are involved in FBI-COOH-glucuronidation in the liver. Interestingly, an extra-hepatic isoform, UGT1A10, exhibited the highest activity with a Km value of 38 µM and a Vmax value of 5.90 nmol/min/mg.

Collectively, these results suggest that both genetic mutations of and the co-administration of inhibitors for FDU-PB-22-metabolizing UGTs will likely increase the risk of FDU-PB-22-induced toxicity.

Funding

This work was supported by the National Institutes of Health and National Institute for Drug Addiction [NIH/NIDA DA039143_ARP and PLP].

History