Highly Efficient Chirality Inducers in Nematic Liquid Crystals: Synthesis of 7,7'-Disubstituted 2,2'-methylenedioxy-1,1'binaphthyls

Christian Kühn, Matthias Bremer* and Peter R. Schreiner*
Institute of Organic Chemistry, Justus Liebig University, Heinrich-Buff-Ring 17, 35392 Giessen and Merck KGaA, Frankfurter Str. 250, 64295 Darmstadt, Germany.

Supporting Information

Table of contents

1. General remarks
2. Synthetic procedures
3. Separation of racemic binaphthyls into enantiomers
4. Specific rotations
5. Helical Twisting Powers (HTP's)
6. NMR spectra
7. Literature

1. General remarks

Chemicals were purchased from ABCR, Aldrich, Alfa Aesar or Merck at the highest purity grade available and were used without further purifications. Solvents were purchased from Merck $\left(\right.$ SeccoSolv $\left.{ }^{\circledR}\right)$. These high-purity dried solvents with lowest water content were used without prior distillation. Unless otherwise noted, all reactions were carried out under a nitrogen-atmosphere. Column chromatography was conducted using Merck silica gel ($0.063-0.200 \mathrm{~mm}$). For thin layer chromatography (TLC) analysis throughout this work, Merck TLC plates were used. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded on Bruker AV500 spectrometer using TMS as the internal standard with chemical shifts given in ppm. Mass spectrometry was performed on a Agilent 7000 Triple Quad. High resolution mass spectrometry (HRMS) was performed on a Thermo Scientific LTQ-XL mass spectrometer. The purity of the synthesized products was determined by high performance liquid chromatography (HPLC) and gas chromatography (GC). HPLC was performed on Hitachi LaChrom system with phenomenex synergi Max-RP and Merck RP-18 Supersher columns. GC analyses were performed by using a Varian 430 gas chromatograph. The resolution of the racemic compounds into their enantiomers was performed on LaPrep Sigma or SFC minigram with Chiralcel and Chiralpak columns. Optical rotations were measured on an Anton Paar MCP 500 polarimeter. Elemental analyses were conducted with a Carlo Erba CHN analyzer.

2. Synthetic procedures

Preparation of the 7-substituted 2-naphthols

Suzuki

coupling (13/15)

5d: R = ${ }^{9}$ Phen
5e: $\mathrm{R}=\mathrm{PhCyC}_{3} \mathrm{H}_{7}$
5f: $\mathrm{R}=\mathrm{C} \equiv \mathrm{C}-\mathrm{PhC}_{3} \mathrm{H}_{7}$
$\mathbf{5 g}: \mathrm{R}=\mathrm{C} \equiv \mathrm{C} — \mathrm{PhSMe}$

3a

t-Bu

8

||

7-Methoxy-2-trifluoromethanesulfonyloxy-naphthalene (2)

2

7-methoxy-2-naphthol ($\mathbf{1 a}, 25.0 \mathrm{~g}, 144 \mathrm{mmol}$) and DMAP ($0.70 \mathrm{~g}, 5.70 \mathrm{mmol}$) were suspended in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(400 \mathrm{~mL})$ at room temperature. Then, triethylamine ($30 \mathrm{~mL}, 216 \mathrm{mmol}$) was added. The yellow reaction mixture was stirred and cooled to $0^{\circ} \mathrm{C}$ using an ice bath. Subsequently, triflic anhydride ($33 \mathrm{~mL}, 200 \mathrm{mmol}$) was added slowly. The mixture was warmed to room temperature and stirred overnight. Then, the mixture was poured onto ice-water and the whole was stirred. The organic phase was separated, washed with water ($1 \times 200 \mathrm{~mL}$) and dried over anhydrous sodium sulfate. The solvent was removed by rotational evaporation. The residue was purified by column chromatography on silica gel using a mixture of heptane/toluene (1:1) as eluent. Concentration followed by recrystallization from heptane afforded 2 ($38.1 \mathrm{~g}, 87 \%$) as colorless crystals. Analytical data were identical with those reported in the literature. ${ }^{1}$

GC (\%): 100. MS (EI): $m / z(\%)=306(58)\left[\mathrm{M}^{+}\right], 173(22)\left[\mathrm{M}^{+}-133\right], 145$ (100) $\left[\mathrm{M}^{+}-161\right], 130$ (15) [$\left.\mathrm{M}^{+}-176\right], 102$ (22) [$\left.\mathrm{M}^{+}-204\right], 69(5)\left[\mathrm{M}^{+}-237\right] .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta / \mathrm{ppm}=3.93(\mathrm{~s}, 3 \mathrm{H}), 7.13$ (d, $1 \mathrm{H}, J=2.5 \mathrm{~Hz}), 7.19-7.23(\mathrm{~m}, 2 \mathrm{H}), 7.63(\mathrm{~d}, 1 \mathrm{H}, J=2.5 \mathrm{~Hz}), 7.76(\mathrm{~d}, 1 \mathrm{H}, J=9.0 \mathrm{~Hz}), 7.82$ $(\mathrm{d}, 1 \mathrm{H}, J=8.9 \mathrm{~Hz}) .{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}): $\delta / \mathrm{ppm}=55.4,105.8,117.0,118.0,119.1(\mathrm{q}, 321 \mathrm{~Hz})$, 120.3, 127.9, 129.4, 130.2, 134.9, 147.8, 158.9.

7-Methoxy-2,2'-binaphthalene (4)

4
$2(60.0 \mathrm{~g}, 196 \mathrm{mmol})$ and 2-naphthylboronic acid ($3 \mathrm{a}, 41.7 \mathrm{~g}, 235 \mathrm{mmol}$) were dissolved in THF (700 mL). Subsequently, a solution of $\mathrm{NaBO}_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O}(41.3 \mathrm{~g}, 294 \mathrm{mmol})$ in 180 mL H H O was added. After addition of $\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}(2.75 \mathrm{~g}, 3.90 \mathrm{mmol})$ and $\mathrm{N}_{2} \mathrm{H}_{5} \mathrm{OH}(2-3$ drops), the reaction mixture was heated to $60^{\circ} \mathrm{C}$ and stirred for 20 h . The black mix ture was cooled to room temperature and diluted with water (300 mL). The organic materials were extracted with MTBE (600 mL). The organic phase was separated, washed with water ($1 \times 400 \mathrm{~mL}$) and dried over anhydrous sodium sulfate. The solvent was evaporated under reduced pressure. The crude product was purified by column chromatography on silica gel using heptane/toluene (1:1) as eluent, to afford the product. Recrystallization from heptane gave 4 ($39.9 \mathrm{~g}, 72 \%$) as a white solid.
GC (\%): 98.7. MS (EI): $m / z(\%)=284$ (100) [M $\left.{ }^{+}\right]$, 241 (34) [$\left.\mathrm{M}^{+}-43\right], 142$ (14) [M+142], 126 (7) [M $\left.{ }^{+}-158\right]$, 119 (11) [$\left.\mathrm{M}^{+}-165\right] .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta / \mathrm{ppm}=3.95(\mathrm{~s}, 3 \mathrm{H}), 7.16$ (dd, $1 \mathrm{H}, \mathrm{J}=8.9$, $2.5 \mathrm{~Hz}), 7.23(\mathrm{~d}, 1 \mathrm{H}, J=2.6 \mathrm{~Hz}), 7.46-7.55(\mathrm{~m}, 2 \mathrm{H}), 7.73(\mathrm{dd}, 1 \mathrm{H}, J=8.4,1.8 \mathrm{~Hz}), 7.77(\mathrm{~d}, 1 \mathrm{H}$, $J=8.9 \mathrm{~Hz}), 7.84-7.97(\mathrm{~m}, 5 \mathrm{H}), 8.05-8.09(\mathrm{~m}, 1 \mathrm{H}), 8.13-8.18(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta / \mathrm{ppm}=55.4,106.1,118.9,123.5,125.1,125.8,126.0,126.1,126.3,127.7,128.2,128.3$, 128.5, 129.2, 132.7, 133.8, 135.0, 138.6, 139.0, 158.1. HRMS m/z calcd. for $\mathrm{C}_{21} \mathrm{H}_{17} \mathrm{O}: 285.12717$; found: 285.12794.

7-Hydroxy-2,2'-binaphthalene (5a)

A solution of $4(1.50 \mathrm{~g}, 5.20 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(30 \mathrm{~mL})$ was stirred and cooled to $5^{\circ} \mathrm{C}$ using an ic e bath. Then, $\mathrm{BBr}_{3}(0.75 \mathrm{~mL}, 7.90 \mathrm{mmol})$ was carefully added dropwise. The reaction mixture turned reddish and was stirred for 3 h at this temperature. After stirring overnight at room temperature, the mixture was poured onto ice-water. The organic materials were extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(100 \mathrm{~mL}$) and MTBE $(10 \mathrm{~mL})$. The separated organic phase was washed with saturated NaHCO_{3} solution $(2 \times 50 \mathrm{~mL})$ and water ($1 \times 50 \mathrm{~mL}$). The organic solvent was dried over anhydrous sodium sulfate and removed under reduced pressure. The recrystallization (toluene) of the remaining yellow solid afforded 5 a (1.30 g , 92\%) as white crystals.
GC (\%): 99.9. MS (EI): $m / z(\%)=270$ (100) $\left[\mathrm{M}^{+}\right], 252$ (6) [$\left.\mathrm{M}^{+}-18\right], 239$ (14) [M+-31], 135 (14) [$\left.\mathrm{M}^{+}-135\right], 119$ (8) [$\left.\mathrm{M}^{+}-151\right] .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{DMSO}$): $\delta / \mathrm{ppm}=7.11$ (dd, $1 \mathrm{H}, J=8.8,2.4 \mathrm{~Hz}$), 7.26 $(\mathrm{d}, 1 \mathrm{H}, \mathrm{J}=2.3 \mathrm{~Hz}), 7.55(\mathrm{~m}, 2 \mathrm{H}), 7.72-7.83(\mathrm{~m}, 2 \mathrm{H}), 7.88-8.07(\mathrm{~m}, 5 \mathrm{H}), 8.12-8.17(\mathrm{~m}, 1 \mathrm{H})$, $8.32-8.37(\mathrm{~m}, 1 \mathrm{H}), 9.81(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz , DMSO): $\delta / \mathrm{ppm}=109.1,118.9,122.0,123.9$, $125.3,125.4,126.1,126.4,127.0,127.5,128.2,128.3,128.4,129.0,132.2,133.4,135.0,137.4,137.6$, 155.7. HRMS m / z calcd. for $\mathrm{C}_{21} \mathrm{H}_{15} \mathrm{O}$: 271.11229; found: 271.11184 .

2-(3,5-Di-tert.-butylphenyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (6)

A mixture of 1-bromo-3,5-di-tert.-butyl-benzol ($25.0 \mathrm{~g}, 91.9 \mathrm{mmol}$), bis(pinacolato)diboron (36.1 g , $138 \mathrm{mmol})$, potassium acetate ($27.1,276 \mathrm{mmol}$), PdCl_{2} (dppf) $(3.37 \mathrm{~g}, 4.60 \mathrm{mmol})$ and dioxane $(200 \mathrm{~mL})$ was stirred at room temperature. The dark red suspension was heated under reflux for 16 h . After cooling to room temperature, the black reaction mixture was poured onto water (300 mL) and the organic materials were extracted with MTBE (400 mL). Then, the insoluble particles were removed by filtration over celite. The separated organic phase was washed with water ($1 \times 200 \mathrm{~mL}$) and brine ($1 \times 100 \mathrm{~mL}$) and dried over anhydrous sodium sulfate. Removing of the solvent afforded a black oil, which was purified by column chromatography on silica gel using toluene as eluent. The organic fractions were collected and evaporated under reduced pressure. The recrystallization (heptane) of the resulting solid afforded 6 ($20.2 \mathrm{~g}, 69 \%$) as colorless crystals. Analytical data were identical with those reported in the literature. ${ }^{2}$

GC (\%): 99.8. MS (EI): $m / z(\%)=316$ (13) [M $\left.{ }^{+}\right]$, 301 (100) [M+ $\left.{ }^{+} 15\right]$, 217 (5) [$\left.\mathrm{M}^{+}-99\right]$, 201 (8) [$\left.\mathrm{M}^{+}-115\right]$, 57 (7) [$\left.\mathrm{M}^{+}-259\right] .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta / \mathrm{ppm}=1.30-1.39(\mathrm{~m}, 30 \mathrm{H}), 7.54(\mathrm{t}, 1 \mathrm{H}, \mathrm{J}=2.0 \mathrm{~Hz})$,
$7.67(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=2.0 \mathrm{~Hz}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta[\mathrm{ppm}]=24.9,31.5,34.8,83.5,125.5,128.8$, 149.8. HRMS m / z calcd. for $\mathrm{C}_{20} \mathrm{H}_{33} \mathrm{BO}_{2}: 316.25736$; found: 316.25702.

2-(3,5-Di-tert.-butylphenyl)-7-methoxy-naphthalene (7)

7
$2(14.0 \mathrm{~g}, 45.6 \mathrm{mmol})$ and $6(17.4 \mathrm{~g}, 54.8 \mathrm{mmol})$ were dissolved in THF (200 mL). Then, $\mathrm{NaBO}_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O}(9.63 \mathrm{~g}, 68.4 \mathrm{mmol}), 40 \mathrm{~mL} \mathrm{H} \mathrm{O}, \mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}(0.96 \mathrm{~g}, 1.40 \mathrm{mmol})$ and $2-3$ drops of $\mathrm{N}_{2} \mathrm{H}_{5} \mathrm{OH}$ were added. The reaction mixture was heated to $60^{\circ} \mathrm{C}$ for 20 h under stirring. After cooling to room temperature, the black mixture was diluted with water (200 mL) and extracted with MTBE $(300 \mathrm{~mL})$. The separated organic phase was washed with water ($1 \times 200 \mathrm{~mL}$) and dried over anhydrous sodium sulfate. Concentration followed by column chromatography using a mixture of heptane/toluene (1:1) as eluent afforded the product. Recrystallization from heptane gave 7 (13.0 g, 82\%) as a white solid.
GC (\%): 99.9. MS (EI): $m / z(\%)=346$ (100) $\left[\mathrm{M}^{+}\right], 331$ (71) [M+15], 275 (5) [M+-71], 165 (12) [$\left.\mathrm{M}^{+}-181\right], 151$ (8) [$\left.\mathrm{M}^{+}-195\right], 57$ (12) [$\left.\mathrm{M}^{+}-289\right] .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta / \mathrm{ppm}=1.41$ (s, 18 H), $3.94(\mathrm{~s}, 3 \mathrm{H}), 7.14(\mathrm{dd}, 1 \mathrm{H}, J=8.9,2.5 \mathrm{~Hz}), 7.21(\mathrm{~d}, 1 \mathrm{H}, J=2.5 \mathrm{~Hz}), 7.47(\mathrm{t}, 1 \mathrm{H}, J=1.8 \mathrm{~Hz}), 7.54$ (d, $2 \mathrm{H}, J=1.8 \mathrm{~Hz}$), $7.60(\mathrm{dd}, 1 \mathrm{H}, J=8.4,1.8 \mathrm{~Hz}), 7.75(\mathrm{~d}, 1 \mathrm{H}, J=9.0 \mathrm{~Hz}), 7.82(\mathrm{~d}, 1 \mathrm{H}, J=8.4 \mathrm{~Hz})$, $7.89-7.95(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta / \mathrm{ppm}=31.6,35.1,55.4,106.1,118.7,121.5,122.0$, 123.9, 124.9, 128.0, 128.1, 129.2, 134.9, 140.4, 140.7, 151.2, 158.0. HRMS m / z calcd. for $\mathrm{C}_{25} \mathrm{H}_{30} \mathrm{O}$: 346.22967; found: 346.22919. Anal. calcd. (\%) for $\mathrm{C}_{25} \mathrm{H}_{30} \mathrm{O}$: $\mathrm{C} 86.66, \mathrm{H} 8.73$; found: C 86.90, H 8.60.

7-(3,5-Di-tert.-butylphenyl)-2-hydroxy-naphthalene (5b)

5b
A solution of $7(11.0 \mathrm{~g}, 31.7 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(150 \mathrm{~mL})$ was stirred and cooled to $5{ }^{\circ} \mathrm{C}$ using an ice bath. Then, $\mathrm{BBr}_{3}(4.5 \mathrm{~mL}, 47.4 \mathrm{mmol})$ was dissolved in $25 \mathrm{~mL} \mathrm{CH} \mathrm{Cl}_{2}$ and added dropwise (slowly). The reaction mixture turned brown and was stirred for 3 h at this temperature. After stirring overnight at room temperature, the mixture was poured onto ice-water $(500 \mathrm{~mL})$. The organic materials were extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(200 \mathrm{~mL})$ and MTBE (20 mL). The separated organic phase was washed with saturated NaHCO_{3} solution $(2 \times 100 \mathrm{~mL})$ and water $(1 \times 150 \mathrm{~mL})$. The organic solution was dried over anhydrous sodium sulfate and the solvent was removed under reduced pressure. The remaining white-yellow solid was recrystallized from a mixture of heptane/toluene to afford $5 \mathbf{b}$ ($10.0 \mathrm{~g}, 94 \%$) as a white powder.
GC (\%): 99.5. MS (EI): $m / z(\%)=332$ (99) [M $\left.{ }^{+}\right], 317$ (100) [M+ $\left.{ }^{+}-15\right]$, 261 (6) [$\left.\mathrm{M}^{+}-71\right]$, 231 (6) [$\left.\mathrm{M}^{+}-101\right]$, 158 (8) [$\left.{ }^{+}-174\right], 144$ (6) [$\left.\mathrm{M}^{+}-188\right], 57$ (13) [$\left.\mathrm{M}^{+}-275\right] .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta / \mathrm{ppm}=1.41$
$(\mathrm{s}, 18 \mathrm{H}), 4.96(\mathrm{~s}, 1 \mathrm{H}), 7.09(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=8.8,2.5 \mathrm{~Hz}), 7.22(\mathrm{~d}, 1 \mathrm{H}, J=2.5 \mathrm{~Hz}), 7.46(\mathrm{t}, 1 \mathrm{H}$, $J=1.8 \mathrm{~Hz}), 7.52(\mathrm{~d}, 2 \mathrm{H}, J=1.8 \mathrm{~Hz}), 7.59(\mathrm{dd}, 1 \mathrm{H}, J=8.4,1.8 \mathrm{~Hz}), 7.77(\mathrm{~d}, 1 \mathrm{H}, J=8.8 \mathrm{~Hz})$, $7.81-7.88(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta \mathrm{ppm}=31.6,35.0,109.7,117.6,121.6,122.0$, 124.0, 124.4, 128.0, 128.1, 129.6, 134.9, 140.6, 151.2, 153.7. HRMS m/z calcd. for $\mathrm{C}_{24} \mathrm{H}_{28} \mathrm{O}$: 332.21402; found: 332.21387. Anal. calcd. (\%) for $\mathrm{C}_{24} \mathrm{H}_{28} \mathrm{O}: \mathrm{C} 86.70, \mathrm{H} 8.49$; found: C 86.20, H 8.90.

3-(1-Adamantyl)-6-bromo-2-naphthol (9)

6-Bromo-2-naphthol (1b, $11.5 \mathrm{~g}, 50.0 \mathrm{mmol}$) and 1-adamantanol ($8,7.69 \mathrm{~g}, 50.0 \mathrm{mmol}$) were suspended in a solution of 60 mL heptane and $40 \mathrm{~mL} \mathrm{CH} 2 \mathrm{Cl}_{2}$. Subsequently, conc. $\mathrm{H}_{2} \mathrm{SO}_{4}$ (3 mL , 56.3 mmol) was added and the whole was stirred for 48 h at room temperature. After this reaction time, the mixture turned from yellow to brown. The insoluble material was filtered off and the solid was washed with heptane ($3 \times 20 \mathrm{~mL}$). The resulting ocher-colored solid was dissolved in MTBE (200 mL) and the organic solution was washed with water ($1 \times 75 \mathrm{~mL}$) and dried over anhydrous sodium sulfate. After removing the solvent under reduced pressure, the crude product was purified by column chromatography on silica gel using a mixture of heptane/toluene (1:1) as eluent. 9 ($8.05 \mathrm{~g}, 45 \%$) could be isolated as a white powder.
GC (\%): 100. MS (EI): m/z (\%) = 356 (100) [M $\left.{ }^{+}\right], 315$ (5) [$\left.\mathrm{M}^{+}-41\right], 301$ (5) [$\left.\mathrm{M}^{+}-55\right], 262(6)\left[\mathrm{M}^{+}-94\right]$, 235 (6) [$\left.\mathrm{M}^{+}-121\right]$, 220 (42) [$\left.\mathrm{M}^{+}-136\right]$, 202 (14) [$\left.\mathrm{M}^{+}-154\right]$, 165 (5) [$\left.\mathrm{M}^{+}-191\right] .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$):反/ppm = $1.78-1.85(\mathrm{~m}, 6 \mathrm{H}), 2.08-2.15(\mathrm{~m}, 3 \mathrm{H}), 2.17-2.23(\mathrm{~m}, 6 \mathrm{H}), 5.07(\mathrm{~s}, 1 \mathrm{H}), 6.94(\mathrm{~s}, 1 \mathrm{H})$, $7.38-7.48(\mathrm{~m}, 2 \mathrm{H}), 7.53(\mathrm{~s}, 1 \mathrm{H}), 7.89(\mathrm{~d}, 1 \mathrm{H}, J=1.7 \mathrm{~Hz}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta / \mathrm{ppm}=29.0$, $37.0,37.4,40.6,110.8,116.8,125.5,126.7,129.0,129.8,130.3,131.2,139.8,153.9$. HRMS m/z calcd. for $\mathrm{C}_{20} \mathrm{H}_{21} \mathrm{BrO}: 356.07758$; Found: 356.07721. Anal. calcd. (\%) for $\mathrm{C}_{20} \mathrm{H}_{21} \mathrm{BrO}$: C 67.23, H 5.92; found: C 67.30, H 6.00 .

3-(1-Adamantyl)-6-bromo-2-methoxynaphthalene (10)

10
A mixture oft sodium hydride (60% oil dispersion, $0.17 \mathrm{~g}, 4.20 \mathrm{mmol}$) in THF (20 mL) was cooled to $0^{\circ} \mathrm{C}$ using an ice bath. To the grey suspension was slowly added $9(1.00 \mathrm{~g}, 2.80 \mathrm{mmol})$ in THF $(10 \mathrm{~mL})$. The mixture was stirred for 30 min at $0^{\circ} \mathrm{C}$. After addition of iodomethane $(0.25 \mathrm{~mL}$, 4.0 mmol), the reaction was allowed to warm to room temperature and stirred overnight. The reaction mixture was quenched with water and extracted with MTBE (100 mL). The separated organic phase was washed with water ($1 \times 50 \mathrm{~mL}$) and dried over anhydrous sodium sulfate. After removing the organic solvent under reduced pressure, the yellow oil was purified by column chromatography on silica gel using heptane as eluent. $9(0.60 \mathrm{~g}, 58 \%)$ could be isolated as a white solid.

GC (\%): 100. MS (EI): $m / z(\%)=370(100)\left[\mathrm{M}^{+}\right], 315(6)\left[\mathrm{M}^{+}-55\right], 300(14)\left[\mathrm{M}^{+}-70\right], 278(5)\left[\mathrm{M}^{+}-92\right]$, 234 (33) [$\left.\mathrm{M}^{+}-136\right], 219$ (5) [$\left.\mathrm{M}^{+}-151\right]$, 202 (8) [$\left.\mathrm{M}^{+}-168\right], 182$ (5) [$\left.\mathrm{M}^{+}-188\right]$, 165 (5) [$\left.\mathrm{M}^{+}-205\right] .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta / \mathrm{ppm}=1.76-1.84(\mathrm{~m}, 6 \mathrm{H}), 2.07-2.14(\mathrm{~m}, 3 \mathrm{H}), 2.14-2.19(\mathrm{~m}, 6 \mathrm{H}), 3.93$ (s, 3 H), $7.06(\mathrm{~s}, 1 \mathrm{H}), 7.43(\mathrm{dd}, 1 \mathrm{H}, J=8.7,2.0 \mathrm{~Hz}), 7.50-7.57(\mathrm{~m}, 2 \mathrm{H}), 7.89(\mathrm{~d}, 1 \mathrm{H}, J=2.0 \mathrm{~Hz})$. ${ }^{13}{ }^{3}$ NMR (100 MHz, CDCl_{3}): $\delta / \mathrm{ppm}=29.0,37.1,37.6,40.7,54.9,106.0,116.8,124.9,127.4,128.9$, 129.7, 130.0, 131.4, 141.2, 158.2. HRMS m / z calcd. for $\mathrm{C}_{21} \mathrm{H}_{23} \mathrm{BrO}$: 370.09323; found: 370.09277. Anal. calcd. (\%) for $\mathrm{C}_{21} \mathrm{H}_{23} \mathrm{BrO}$: C 67.93, H 6.24; found: C 68.00, H 6.20 .

2-(7-Adamantyl-6-methoxy-naphthyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (11)

A mixture of 10 ($14.0 \mathrm{~g}, 37.7 \mathrm{mmol}$), bis(pinacolato)diboron ($14.8 \mathrm{~g}, 56.5 \mathrm{mmol}$), potassium acetate $(11.1 \mathrm{~g}, 113 \mathrm{mmol}), \mathrm{PdCl}_{2}(\mathrm{dppf})(1.38 \mathrm{~g}, 1.90 \mathrm{mmol})$ and dioxane (200 mL) was stirred at room temperature. The dark red suspension was heated under reflux for 16 h . After cooling to room temperature, the black reaction mixture was poured onto water (200 mL) and the organic materials were extracted with MTBE (300 mL). Then, the insoluble particles were removed by filtration over celite. The separated organic phase was washed with water ($1 \times 200 \mathrm{~mL}$) and brine ($1 \times 200 \mathrm{~mL}$) and dried over anhydrous sodium sulfate. Concentration afforded a black oil, which was purified by column chromatography on silica gel using a mixture of heptane/toluene (1:1) as eluent. The organic fractions were collected and evaporated under reduced pressure. The recrystallization (heptane) of the resulting solid afforded 10 (11.0 g, 70\%) as colorless crystals.
GC (\%): 99.9. MS (EI): m/z (\%) = 418 (100) [M+], 346 (9) [M+-72], 332 (5) [$\left.\mathrm{M}^{+}-86\right], 319$ (8) [$\left.\mathrm{M}^{+}-99\right]$, 246 (5) [$\left.\mathrm{M}^{+}-172\right] .{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta / \mathrm{ppm}=1.37(\mathrm{~s}, 12 \mathrm{H}), 1.75-1.84(\mathrm{~m}, 6 \mathrm{H})$, $2.05-2.12(\mathrm{~m}, 3 \mathrm{H}), 2.17(\mathrm{~m}, 6 \mathrm{H}), 3.94(\mathrm{~s}, 3 \mathrm{H}), 7.09(\mathrm{~s}, 1 \mathrm{H}), 7.62-7.69(\mathrm{~m}, 2 \mathrm{H}), 7.74$ (dd, 1 H , $J=8.1,1.2 \mathrm{~Hz}), 8.28(\mathrm{~d}, 1 \mathrm{H}, J=1.1 \mathrm{~Hz}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta / \mathrm{ppm}=24.9,29.2,37.2,37.5$, 40.8, 54.8, 83.7, 105.9, 124.8, 126.6, 128.2, 130.4, 134.8, 136.2, 139.9, 159.0. HRMS m / z calcd. for $\mathrm{C}_{27} \mathrm{H}_{35} \mathrm{BO}_{3}$: 418.26793; found: 418.26755. Anal. calcd. (\%) for $\mathrm{C}_{27} \mathrm{H}_{35} \mathrm{BO}_{3}$: C 77.51, H 8.43; found: C 77.40, H 8.40.

7-(1-Adamantyl)-6-methoxy-2-hydroxynaphthalene (5c)

5c
11 ($1.50 \mathrm{~g}, 3.60 \mathrm{mmol}$) was dissolved in acetone (40 mL) and added to a stirred mixture of oxone $(2.31 \mathrm{~g}, 3.80 \mathrm{mmol})$ in $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$ at $5^{\circ} \mathrm{C}$ using an ice bath. After 30 min , the ice bath was removed and the mixture was stirred at room temperature overnight. The brown colored suspension was filtered off and the solid was washed with acetone. The organic filtrate was concentrated under reduced pressure and the residue was dissolved in MTBE (75 mL). The organic solution was washed with
water ($3 \times 25 \mathrm{~mL}$), dried over anhydrous sodium sulfate and concentrated to dryness. The subsequent column chromatography on silica gel using toluene as eluent and recrystallization from heptane afforded $5 \mathrm{c}(0.73 \mathrm{~g}, 63 \%)$ as a white solid.
GC (\%): 100. MS (EI): $m / z(\%)=308$ (100) [$\left.{ }^{+}\right]$, 251 (8) [$\left.\mathrm{M}^{+}-57\right], 236$ (23) [$\left.\mathrm{M}^{+}-72\right], 214$ (5) [$\left.\mathrm{M}^{+}-94\right]$, 173 (5) [$\left.\mathrm{M}^{+}-135\right] .{ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta / \mathrm{ppm}=1.75-1.83(\mathrm{~m}, 6 \mathrm{H}), 2.06-2.13(\mathrm{~m}, 3 \mathrm{H}), 2.14$ - $2.20(\mathrm{~m}, 6 \mathrm{H}), 3.90(\mathrm{~s}, 3 \mathrm{H}), 4.80(\mathrm{~s}, 1 \mathrm{H}), 7.00(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=8.7,2.5 \mathrm{~Hz}), 7.04-7.10(\mathrm{~m}, 2 \mathrm{H}), 7.45$ $(\mathrm{s}, 1 \mathrm{H}), 7.58(\mathrm{~d}, 1 \mathrm{H}, J=8.7 \mathrm{~Hz}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta / \mathrm{ppm}=29.2,37.2,37.5,40.8,54.9$, 106.3, 109.8, 117.3, 124.2, 127.5, 128.1, 129.7, 140.8, 151.7, 156.5. HRMS m / z calcd. for $\mathrm{C}_{21} \mathrm{H}_{24} \mathrm{O}_{2}$: 308.17763; found: 308.17742. Anal. calcd. (\%) for $\mathrm{C}_{21} \mathrm{H}_{24} \mathrm{O}_{2}$: C 81.78, H 7.84; found: C 81.80, H 7.80.

7-(Phenanthren-9-yl)naphthalen-2-ol (5d)

5d
7-Bromo-2-naphthol (1c, $10.0 \mathrm{~g}, 44.4 \mathrm{mmol}$) and 9-phenanthrylboronic acid ($\mathbf{3 b}, 10.4 \mathrm{~g}, 46.8 \mathrm{mmol}$) were dissolved in THF (100 mL). Subsequently, a solution of $\mathrm{NaBO}_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O}(9.36 \mathrm{~g}, 66.6 \mathrm{mmol})$ in $30 \mathrm{~mL} \mathrm{H} \mathrm{H}_{2} \mathrm{O}$ was added. After addition of $\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}(1.56 \mathrm{~g}, 2.20 \mathrm{mmol})$ and $\mathrm{N}_{2} \mathrm{H}_{5} \mathrm{OH}$ ($2-3$ drops), the reaction mixture was heated to $60{ }^{\circ} \mathrm{C}$ and stirre d for 20 h . The black mixture was cooled to room temperature and diluted with water (200 mL). The organic materials were extracted with MTBE $(300 \mathrm{~mL})$. Insoluble particles were removed by filtration over celite and the organic phase was separated, washed with water $(1 \times 100 \mathrm{~mL})$ and dried over anhydrous sodium sulfate. The solvent was evaporated under reduced pressure. The crude product was purified by column chromatography on silica gel using toluene as eluent, to afford the product. Recrystallization from a mixture of heptane/toluene (1:2) gave $5 \mathbf{d}(8.40 \mathrm{~g}, 59 \%)$ as a white solid.

GC (\%): 100. MS (EI): $m / z(\%)=320$ (100) [$\left.\mathrm{M}^{+}\right], 303$ (10) [$\left.\mathrm{M}^{+}-17\right], 289$ (27) [$\left.\mathrm{M}^{+}-31\right], 276$ (10) [$\left.\mathrm{M}^{+}-44\right]$, 160 (13) [$\left.\mathrm{M}^{+}-160\right], 151$ (17) [$\left.\mathrm{M}^{+}-169\right], 144$ (22) [$\left.\mathrm{M}^{+}-176\right], 131$ (10) [$\left.\mathrm{M}^{+}-189\right], 84$ (10) [$\left.\mathrm{M}^{+}-236\right]$, 49 (14) [$\left.\mathrm{M}^{+}-271\right] .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta / \mathrm{ppm}=5.03(\mathrm{~s}, 1 \mathrm{H}), 7.13-7.23(\mathrm{~m}, 2 \mathrm{H}), 7.48-7.55$ (m, 2H), $7.59-7.71(\mathrm{~m}, 3 \mathrm{H}), 7.76(\mathrm{~s}, 1 \mathrm{H}), 7.82-7.98(\mathrm{~m}, 5 \mathrm{H}), 8.71-8.83(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta / \mathrm{ppm}=109.7$, 118.0, 122.6, 122.9, 126.3, 126.5, 126.6, 126.7, 126.9, 127.1, $127.2,127.5,127.7,128.2,128.7,129.8,130.1,130.7,131.2,131.6,134.7,138.8,139.1,153.8$. HRMS m/z calcd. for $\mathrm{C}_{24} \mathrm{H}_{16} \mathrm{O}$: 320.12012; found: 321.12064. Anal. calcd. (\%) for $\mathrm{C}_{24} \mathrm{H}_{16} \mathrm{O}: \mathrm{C} 89.97$, H 5.03; found: C 90.20, H 4.90 .

7-(4-(4-Propyl-cyclohexyl)phenyl)naphthalen-2-ol (5e)

5e
7-Bromo-2-naphthol (1c, $10.5 \mathrm{~g}, 46.6 \mathrm{mmol}$) and 4-(4-propyl-cyclohexyl)phenylboronic acid (3c, $13.8 \mathrm{~g}, 55.9 \mathrm{mmol}$) were dissolved in THF (100 mL). Subsequently, a solution of $\mathrm{NaBO}_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O}$
($9.83 \mathrm{~g}, 69.9 \mathrm{mmol}$) in $30 \mathrm{~mL} \mathrm{H} \mathrm{H}_{2} \mathrm{O}$ was added. After addition of $\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}(1.64 \mathrm{~g}, 2.30 \mathrm{mmol})$ and $\mathrm{N}_{2} \mathrm{H}_{5} \mathrm{OH}$ (2-3 drops), the reaction mixture was heated to $60^{\circ} \mathrm{C}$ and stirred for 5 h . The black mixture was cooled to room temperature and diluted with water (250 mL). The organic materials were extracted with MTBE (300 mL). Insoluble particles were removed by filtration over celite and the organic phase was separated, washed with water ($1 \times 100 \mathrm{~mL}$) and dried over anhydrous sodium sulfate. Concentration followed by recrystallization (heptane/ethanol 10:1) gave 5 e ($10.5 \mathrm{~g}, 65 \%$) as white needles.

GC (\%): 99.9. MS (EI): $m / z(\%)=344$ (100) [M $\left.{ }^{+}\right], 315(5)\left[\mathrm{M}^{+}-29\right], 259(25)\left[\mathrm{M}^{+}-85\right], 246(35)\left[\mathrm{M}^{+}-98\right]$, 233 (27) [$\left.\mathrm{M}^{+}-111\right]$, 215 (10) [$\left.\mathrm{M}^{+}-129\right]$, 189 (5) [$\left.\mathrm{M}^{+}-155\right]$, 129 (11) [$\left.\mathrm{M}^{+}-215\right], 116$ (7) [$\left.\mathrm{M}^{+}-228\right], 84$ (15) [$\left.\mathrm{M}^{+}-260\right], 49$ (20) [$\left.\mathrm{M}^{+}-295\right], 41$ (10) [$\left.\mathrm{M}^{+}-303\right], 28$ (5) [$\left.\mathrm{M}^{+}-316\right] .{ }^{1} \mathrm{H}$ NMR (500 MHz, CDCl3): $\delta / \mathrm{ppm}=$ $0.95(\mathrm{t}, 3 \mathrm{H}, \mathrm{J}=7.2 \mathrm{~Hz}), 1.03-1.18(\mathrm{~m}, 2 \mathrm{H}), 1.21-1.59(\mathrm{~m}, 7 \mathrm{H}), 1.87-2.05(\mathrm{~m}, 4 \mathrm{H}), 2.56(\mathrm{tt}, 1 \mathrm{H}$, $J=12.2,3.4 \mathrm{~Hz}), 4.95(\mathrm{~s}, 1 \mathrm{H}), 7.11(\mathrm{dd}, 1 \mathrm{H}, J=8.8,2.5 \mathrm{~Hz}), 7.21(\mathrm{~d}, 1 \mathrm{H}, J=2.5 \mathrm{~Hz}), 7.31-7.38(\mathrm{~m}$, $2 H$), $7.59-7.69(\mathrm{~m}, 3 \mathrm{H}), 7.79(\mathrm{~d}, 1 \mathrm{H}, J=8.8 \mathrm{~Hz}), 7.84(\mathrm{~d}, 1 \mathrm{H}, J=8.5 \mathrm{~Hz}), 7.87-7.90(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}): $\delta / \mathrm{ppm}=14.4,20.1,33.6,34.4,37.1,39.8,44.4,109.8,117.6,123.5,124.0$, 127.3, 127.3, 128.0, 128.2, 129.6, 134.9, 138.7, 139.3, 147.3, 153.7. HRMS m / z calcd. for $\mathrm{C}_{25} \mathrm{H}_{28} \mathrm{O}$: 344.21402; found: 344.21395. Anal. calcd. (\%) for $\mathrm{C}_{25} \mathrm{H}_{28} \mathrm{O}: \mathrm{C} 87.16, \mathrm{H} 8.19$; found: C 87.30, H 8.20.

Trimethyl(2-(4-(4-propylcyclohexyl)phenyl)ethynyl)silane (12)

12
To a mixture of 1-bromo-4-(4-propylcyclohexyl)benzene (20.0 g, 71.1 mmol) in triethylamine $(250 \mathrm{~mL})$ was added ethynyltrimethylsilane ($15 \mathrm{~mL}, 107 \mathrm{mmol}$) and $\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}$ $(2.50 \mathrm{~g}, 3.60 \mathrm{mmol})$. The yellow suspension was stirred for 15 min at room temperature. After addition of

Cu(I)-iodide
$(0.68 \mathrm{~g}, 3.60 \mathrm{mmol})$, the reaction mixture was heated to $50^{\circ} \mathrm{C}$ and stirred overnight. After cooling down, the reaction was poured onto water $(300 \mathrm{~mL})$ and the organic materials were extracted with MTBE (250 mL). The organic phase was separated, dried over anhydrous sodium sulfate and evaporated under reduced pressure. The crude product was purified by column chromatography on silica gel using heptane as eluent. Removal of the solvent and subsequent recrystallization from ethanol gave 12 ($18.2 \mathrm{~g}, 86 \%$) as white crystals.
GC (\%): 99.8. MS (EI): $m / z(\%)=298$ (33) $\left[\mathrm{M}^{+}\right]$, 283 (100) [$\left.\mathrm{M}^{+}-15\right], 185$ (12) [$\left.\mathrm{M}^{+}-113\right], 99$ (5) [M+-199], 73 (7) [M+-225]. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta / \mathrm{ppm}=0.26(\mathrm{~s}, 9 \mathrm{H}), 0.93(\mathrm{t}, 3 \mathrm{H}, \mathrm{J}=7.2 \mathrm{~Hz}$), $0.98-1.14(\mathrm{~m}, 2 \mathrm{H}), 1.18-1.53(\mathrm{~m}, 7 \mathrm{H}), 1.79-1.97(4 \mathrm{H}), 2.39-2.56(\mathrm{~m}, 1 \mathrm{H}), 7.11-7.19$ (m, 2 H), $7.36-7.45$ (m, 2 H). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta / \mathrm{ppm}=14.4,20.0,33.4,34.1,37.0,39.7$, 44.5, 93.2, 105.4, 120.4, 126.7, 131.9, 148.5. HRMS m / z calcd. for $\mathrm{C}_{20} \mathrm{H}_{30} \mathrm{Si}$: 298.21168; found: 298.21030. Anal. calcd. (\%) for $\mathrm{C}_{20} \mathrm{H}_{30} \mathrm{Si}$: C 80.46, H 10.13; found: C 80.50, H 10.10.

13
12 ($23.5 \mathrm{~g}, 78.7 \mathrm{mmol}$) was dissolved in THF (150 mL). Then, 1 M TBAF ($86 \mathrm{~mL}, 86.0 \mathrm{mmol}$) was added dropwise. After stirring the colorless solution for 3 h at room temperature, the reaction was poured onto water (200 mL) and the organic materials were extracted with MTBE (200 mL). The organic phase was separated, washed with water ($1 \times 100 \mathrm{~mL}$) and dried over anhydrous sodium sulfate. The organic solvent was removed under reduced pressure and the resulting residue was purified by column chromatography on silica gel using a mixture of heptane/toluene (9:1) as eluent. Removal of the solvent and recrystallization from ethanol gave $13(13.4 \mathrm{~g}, 75 \%)$ as colorless crystals. Analytical data were identical with those reported in the literature. ${ }^{3}$
 122 (5) [$\left.\mathrm{M}^{+}-104\right], 115$ (60) [$\left.\mathrm{M}^{+}-111\right]$, 102 (12) [$\left.\mathrm{M}^{+}-124\right], 89$ (5) [$\left.\mathrm{M}^{+}-137\right], 81$ (6) [$\left.\mathrm{M}^{+}-145\right], 77$ (5) [$\left.\mathrm{M}^{+}-149\right], 67$ (5) [$\left.\mathrm{M}^{+}-159\right], 55$ (9) [$\left.\mathrm{M}^{+}-171\right], 41$ (9) [$\left.\mathrm{M}^{+}-165\right] .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta / \mathrm{ppm}=0.93$ $(\mathrm{t}, 3 \mathrm{H}, J=7.2 \mathrm{~Hz}), 1.00-1.15(\mathrm{~m}, 2 \mathrm{H}), 1.20-1.53(\mathrm{~m}, 7 \mathrm{H}), 1.83-1.97(\mathrm{~m}, 4 \mathrm{H}), 2.49(\mathrm{~m}, 1 \mathrm{H})$, $3.04(\mathrm{~s}, 1 \mathrm{H}), 7.16-7.22(\mathrm{~m}, 2 \mathrm{H}), 7.41-7.47(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta / \mathrm{ppm}=14.4$, $20.0,33.5,34.1,37.0,39.7,44.6,83.9,119.4,126.9,132.1,148.9$. HRMS m / z calcd. for $\mathrm{C}_{17} \mathrm{H}_{22}$: 226.17215; found: 226.17164. Anal. calcd. (\%) for $\mathrm{C}_{20} \mathrm{H}_{30} \mathrm{Si}$: C 90.20, H 9.80; found: C 90.10, H 9.80.

7-((4-(4-Propylcyclohexyl)phenyl)ethynyl)naphthalen-2-ol (5f)

A mixture of 7-bromo-2-naphthol (1c, $6.30 \mathrm{~g}, 27.9 \mathrm{mmol}), 13(6.98 \mathrm{~g}, 30.8 \mathrm{mmol})$, triethylamine $(150 \mathrm{~mL})$ and $\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}(0.98 \mathrm{~g}, 1.40 \mathrm{mmol})$ was stirred for 15 min at room temperature. After addition of $\mathrm{Cu}(\mathrm{I})$-iodide ($0.27 \mathrm{~g}, 1.4 \mathrm{mmol}$), the reaction mixture was heated to $60{ }^{\circ} \mathrm{C}$ and stirred overnight. After cooling down, the reaction was poured onto water (200 mL) and extracted with MTBE (200 mL). The organic phase was separated, dried over anhydrous sodium sulfate and evaporated under reduced pressure. The crude product was purified by column chromatography on silica gel using toluene and toluene/ethyla acetate (9:1) as eluent. Recrystallization from toluene gave $\mathbf{5 f}$ ($6.45 \mathrm{~g}, 62 \%$) as a beige-colored solid.
 128 (10) [$\left.\mathrm{M}^{+}-240\right], 55$ (6) [$\left.\mathrm{M}^{+}-313\right], 41$ (6) [$\left.\mathrm{M}^{+}-327\right] .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta / \mathrm{ppm}=0.94(\mathrm{t}, 3 \mathrm{H}$, $J=7.2 \mathrm{~Hz}), 1.01-1.17(\mathrm{~m}, 2 \mathrm{H}), 1.19-1.55(\mathrm{~m}, 7 \mathrm{H}), 1.84-2.02(\mathrm{~m}, 4 \mathrm{H}), 2.45-2.59(\mathrm{~m}, 1 \mathrm{H}), 5.00$ (s, 1 H), $7.10-7.15(\mathrm{~m}, 2 \mathrm{H}), 7.21-7.26(\mathrm{~m}, 2 \mathrm{H}), 7.45(\mathrm{dd}, 1 \mathrm{H}, J=8.4,1.6 \mathrm{~Hz}), 7.49-7.55$ (m, 2 H), 7.75 (dd, $2 \mathrm{H}, J=8.3,1.4 \mathrm{~Hz}$), $7.90(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta / \mathrm{ppm}=14.4,20.1$, $33.5,34.2,37.0,39.7,44.6,89.2,90.1,109.4,118.4,120.6,121.6,126.4,126.9,127.8,128.3,129.7$, 131.6, 134.3, 148.4, 153.9. HRMS m / z calcd. for $\mathrm{C}_{27} \mathrm{H}_{28} \mathrm{O}: 368.21402$; found: 368.21337. Anal. calcd. (\%) for $\mathrm{C}_{27} \mathrm{H}_{28} \mathrm{O}: \mathrm{C} 88.00$, H 7.66; found: C 87.40, H 7.60 .

4-Ethynyl-thioanisole (15)

15
To a mixture of 4-bromothioanisole ($14,22.6 \mathrm{~g}, 111 \mathrm{mmol}$) in triethylamine (250 mL) was added ethynyltrimethylsilane ($23 \mathrm{~mL}, 166 \mathrm{mmol}$) and $\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}(3.91 \mathrm{~g}, 5.60 \mathrm{mmol})$. The yellow suspension was stirred for 15 min at room temperature. After addition of $\mathrm{Cu}(\mathrm{I})$-iodide (1.06 g , 5.60 mmol), the reaction mixture was heated to $50^{\circ} \mathrm{C}$ and stirred overnight. After cooling down, the organic solvent was removed under reduced pressure. The resulting residue was purified by column chromatography using heptane as eluent. Evaporation of the solvent gave 17.1 g of a brown oil, which was dissolved in methanol (120 mL). After addition of potassium carbonate ($5.33 \mathrm{~g}, 38.6 \mathrm{mmol}$), the suspension was stirred for 2 h at room temperature. The solvent was evaporated under reduced pressure and to the residue was added MTBE $(150 \mathrm{~mL})$ and water $(100 \mathrm{~mL})$. The organic phase was separated, washed with water (1×75) and dried over anhydrous sodium sulfate. Purification by column chromatography using a mixture of heptane/toluene (1:1) as eluent, gave 15 ($10.2 \mathrm{~g}, 62 \%$) as a light yellow oil. Analytical data were identical with those reported in the literature. ${ }^{4}$
GC (\%): 98.8. MS (EI): $m / z(\%)=148$ (100) $\left[\mathrm{M}^{+}\right], 133$ (32) $\left[\mathrm{M}^{+}-15\right], 115$ (10) $\left[\mathrm{M}^{+}-33\right], 102$ (13) [$\left.\mathrm{M}^{+}-46\right], 89$ (43) [$\left.\mathrm{M}^{+}-59\right], 74$ (12) [$\left.\mathrm{M}^{+}-74\right]$, 69 (6) [$\mathrm{M}^{+-79], ~} 63$ (10) [$\left.\mathrm{M}^{+}-85\right], 51$ (5) [$\mathrm{M}^{+-97] . ~}{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta / \mathrm{ppm}=2.51(\mathrm{~s}, 3 \mathrm{H}), 3.09(\mathrm{~s}, 1 \mathrm{H}), 7.20(\mathrm{~d}, 2 \mathrm{H}, J=8.2 \mathrm{~Hz}), 7.43(\mathrm{~d}, 2 \mathrm{H}$, $J=8.2 \mathrm{~Hz}$). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta / \mathrm{ppm}=15.3,83.5,118.4,125.8,132.4,140.1$. HRMS m / z calcd. for $\mathrm{C}_{9} \mathrm{H}_{9} \mathrm{~S}: 149.04250$; found: 149.04167.

7-(4-Methylsulfanyl-phenylethinyl)naphthalen-2-ol (5g)

5 g
A mixture of 7-bromo-2-naphthol ($\mathbf{1 c}, 5.60 \mathrm{~g}, 24.9 \mathrm{mmol}$), 15 ($4.47 \mathrm{~g}, 29.8 \mathrm{mmol}$), triethylamine $(150 \mathrm{~mL})$ and $\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}(0.87 \mathrm{~g}, 1.20 \mathrm{mmol})$ was stirred for 15 min at room temperature. After addition of $\mathrm{Cu}(\mathrm{I})$-iodide ($0.24 \mathrm{~g}, 1.20 \mathrm{mmol}$), the reaction mixture was heated under reflux and stirred overnight. After cooling down, the organic solvent was removed under reduced pressure. The resulting residue was purified by column chromatography using toluene and toluene/ethyl acetate (9:1) as eluent. The combined product fractions were evaporated under reduced pressure. Recrystallization from toluene (two times) afforded 5 g ($3.90 \mathrm{~g}, 54 \%$) as a beige-colored solid.
GC (\%): 99.6. MS (EI): $m / z(\%)=290(100)\left[M^{+}\right], 275(44)\left[M^{+}-15\right], 245(10)\left[M^{+}-45\right], 213(8)\left[\mathrm{M}^{+}-77\right]$, 203 (8) [$\left.\mathrm{M}^{+}-87\right]$, 145 (18) [$\left.\mathrm{M}^{+}-145\right]$, 137 (5) [$\left.\mathrm{M}^{+}-153\right]$, 122 (5) [$\left.\mathrm{M}^{+}-168\right]$, 101 (5) [$\left.\mathrm{M}^{+}-189\right] .{ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta / \mathrm{ppm}=2.35(\mathrm{~s}, 3 \mathrm{H}), 6.95-7.03(\mathrm{~m}, 2 \mathrm{H}), 7.04-7.11(\mathrm{~m}, 2 \mathrm{H}), 7.18(\mathrm{dd}, 1 \mathrm{H}$, $J=8.4,1.7 \mathrm{~Hz}), 7.27-7.35(\mathrm{~m}, 2 \mathrm{H}), 7.52(\mathrm{dd}, 2 \mathrm{H}, J=9.0,6.3 \mathrm{~Hz}), 7.66-7.71(\mathrm{~m}, 1 \mathrm{H}), 9.12$ $(\mathrm{s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}): $\delta / \mathrm{ppm}=15.2,89.2,90.2,109.0,119.4,120.5,125.2,125.8$, 127.5, 127.7, 129.1, 129.5, 131.7, 134.4, 139.2, 155.8. HRMS m/z calcd. for $\mathrm{C}_{19} \mathrm{H}_{14} \mathrm{OS}: 290.07654$; found: 290.07609. Anal. calcd. (\%) for $\mathrm{C}_{49} \mathrm{H}_{30} \mathrm{O}_{2}$: C 78.59, H 4.86; found: C 78.60, H 5.00.

Oxidative coupling of the 2-naphthol derivatives (5a-g) with $\mathrm{CuCl}(\mathrm{OH}) \cdot \mathrm{TMEDA}^{5}$

(\pm)-16a-g

Typical procedure: (\pm)-7,7'-Di(2-naphthyl)-1,1'-bi-2-naphthol (16a)

16a
$5 \mathbf{a}(1.00 \mathrm{~g}, 3.70 \mathrm{mmol})$ was added to a mixture of $\mathrm{CuCl}(\mathrm{OH}) \cdot$ TMEDA ($20 \mathrm{mg}, 0.04 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(40 \mathrm{~mL})$ and the whole was stirred at room temperature for 20 h in open air. The dark reaction mixture was concentrated and purified by column chromatography on silica gel (toluene to toluene/ethyl acetate 9:1). The combined organic fractions were evaporated to dryness, and the subsequent recrystallization (toluene) afforded $16 \mathbf{a}(0.60 \mathrm{~g}, 54 \%)$ as a white powder.
GC (\%): 89.0. MS (EI): $m / z(\%)=538$ (100) [M $\left.{ }^{+}\right]$, 269 (9) [$\left.\mathrm{M}^{+}-269\right], 241$ (9) [$\left.\mathrm{M}^{+}-297\right]$.]. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{DMSO}$): $\delta / \mathrm{ppm}=7.39-7.55(\mathrm{~m}, 10 \mathrm{H}), 7.73$ (dd, $2 \mathrm{H}, \mathrm{J}=8.4,1.8 \mathrm{~Hz}$), $7.82-7.91$ (m, 6 H), 7.97 (dd, $4 \mathrm{H}, J=5.3,3.6 \mathrm{~Hz}$), 8.03 (d, $2 \mathrm{H}, J=8.5 \mathrm{~Hz}$), 9.44 (s, 2 H). ${ }^{13} \mathrm{C}-\mathrm{NMR}(100 \mathrm{MHz}$, DMSO): $\delta \mathrm{ppm}=115.7,118.9,121.9,122.6,124.9,125.2,126.0,126.4,127.4,127.5,128.0,128.5$, 128.7, 128.9, 132.0, 133.1, 134.2, 137.4, 138.1. HRMS m / z calcd. for $\mathrm{C}_{21} \mathrm{H}_{15} \mathrm{O}$: 538.19328 ; found: 538.19152.
(\pm)-7,7'-Bis-(3,5-di-tert.-butylphenyl)-2,2'-dihydroxy-1,1'-binaphthyl (16b) from 5b

16b
Reaction time: 3 h ; yield: $4.02 \mathrm{~g} \mathrm{(46} \mathrm{\%);} \mathrm{beige-colored} \mathrm{solid} ,\mathrm{recrystallization} \mathrm{from} \mathrm{ethanol}$.
HPLC (\%): 97.2. MS (EI): $m / z(\%)=662$ (100) [$\left.\mathrm{M}^{+}\right]$, 316 (13) [$\left.\mathrm{M}^{+}-346\right]$, 57 (9) [$\left.\mathrm{M}^{+}-605\right]$. ${ }^{1} \mathrm{H}$ NMR (500 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta / \mathrm{ppm}=1.21(\mathrm{~s}, 36 \mathrm{H}), 5.23(\mathrm{~s}, 2 \mathrm{H}), 7.18(\mathrm{~d}, 4 \mathrm{H}, J=1.8 \mathrm{~Hz}), 7.29-7.41(\mathrm{~m}, 6 \mathrm{H})$, 7.60 (dd, $2 \mathrm{H}, J=8.4,1.8 \mathrm{~Hz}$), $7.94(\mathrm{dd}, 4 \mathrm{H}, J=10.8,8.7 \mathrm{~Hz}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta / \mathrm{ppm}=$ $31.3,34.8,111.2,117.5,121.5,122.0,123.2,124.1,128.5,131.1,133.7,140.6,141.5,151.0,153.0$.

HRMS m/z calcd. for $\mathrm{C}_{48} \mathrm{H}_{54} \mathrm{O}_{2}$: 662.41238; found: 662.4111. Anal. calcd. (\%) for $\mathrm{C}_{48} \mathrm{H}_{54} \mathrm{O}_{2}$: C 86.96, H 8.21; found: C 85.90, H 8.50.
(\pm)-7,7'-Di(1-adamantyl)-2,2'-dihydroxy-6,6'-dimethoxy-1,1'-binaphthyl (16c) from 5c

16c
Reaction time: 3.5 h ; yield: 0.31 g (62%); white solid (purification after column chromatography: stirring in acetone).

HPLC (\%): 98.2. MS (EI): $m / z(\%)=614$ (34) [M+$\left.{ }^{+}\right], 135$ (100) [$\left.\mathrm{M}^{+}-479\right], 107$ (12) [$\left.\mathrm{M}^{+}-507\right]$, 93 (23) [$\left.\mathrm{M}^{+}-521\right], 67$ (9) [$\left.\mathrm{M}^{+}-547\right], 28$ (14) [$\left.{ }^{+}+586\right] .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta / \mathrm{ppm}=1.60-1.99(\mathrm{~m}$, $30 \mathrm{H}) 3.95(\mathrm{~s}, 6 \mathrm{H}), 4.91(\mathrm{~s}, 2 \mathrm{H}), 7.07$ (s, 2H), 7.19 (s, 2 H), $7.30(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=8.9 \mathrm{~Hz}), 7.80(\mathrm{~d}, 2 \mathrm{H}$, $J=8.8 \mathrm{~Hz}$). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta / \mathrm{ppm}=29.0,37.0,37.6,40.3,54.9,107.1,111.6,117.4$, 122.5, 127.8, 128.7, 128.9, 141.3, 150.7, 156.5. HRMS m/z calcd. for $\mathrm{C}_{42} \mathrm{H}_{46} \mathrm{O}_{4}$: 614.33961; found: 614.33752. Anal. calcd. (\%) for $\mathrm{C}_{42} \mathrm{H}_{46} \mathrm{O}_{4}$: C 82.05, H 7.54; found: C 82.20, H 7.80 .

(\pm)-2,2‘-Dihydroxy-7,7'-diphenanthren-9-yl-1,1'-binaphthyl (16d) from 5d

16d
Reaction time: 4 h ; yield: 5.30 g (82\%); white solid (purification after column chromatography: stirring in acetone).
HPLC (\%): 97.4. MS (EI): $m / z(\%)=638$ (100) [M+], 319 (15) [$\left.\mathrm{M}^{+}-319\right]$, 289 (9) [$\left.\mathrm{M}^{+}-349\right] .{ }^{1} \mathrm{H}$ NMR (500 MHz, DMSO): $\delta / \mathrm{ppm}=7.26-7.30(\mathrm{~m}, 2 \mathrm{H}), 7.34-7.50(\mathrm{~m}, 6 \mathrm{H}), 7.56-7.73(\mathrm{~m}, 8 \mathrm{H})$, $7.79-7.93(\mathrm{~m}, 6 \mathrm{H}), 7.98(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=8.3 \mathrm{~Hz}), 8.74-8.91(\mathrm{~m}, 4 \mathrm{H}), 9.49(\mathrm{~s}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz , DMSO): $\delta / \mathrm{ppm}=115.4,118.8,122.7,123.3,124.4,125.3,126.0,126.6,126.7,126.9,127.0,127.3$, 128.2, 128.5, 128.6, 128.8, 129.2, 130.1, 130.8, 133.9, 137.1, 138.2, 153.6. HRMS m / z calcd. for $\mathrm{C}_{48} \mathrm{H}_{30} \mathrm{O}_{2}$: 638.22458; found: 638.22371. Anal. calcd. (\%) for $\mathrm{C}_{48} \mathrm{H}_{30} \mathrm{O}_{2}$: C 90.26, H 4.73; found: C 89.90, H 4.80.

16e
Reaction time: 4 h ; yield: $0.52 \mathrm{~g}(52 \%)$; white solid, recrystallization from heptane/ethanol (1:1) with few drops of toluene.

HPLC (\%): 99.9. MS (EI): $m / z(\%)=686$ (100) [$\left.\mathrm{M}^{+}\right], 638$ (6) [$\left.{ }^{+}+48\right], 258$ (5) [$\left.\mathrm{M}^{+}-428\right], 83$ (7) [$\left.\mathrm{M}^{+}-603\right], 69$ (13) [$\left.\mathrm{M}^{+}-617\right], 55$ (7) [$\left.{ }^{+}+631\right] .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta / \mathrm{ppm}=0.81(\mathrm{t}, 6 \mathrm{H}$, $J=7.3 \mathrm{~Hz}), 0.89-0.98(\mathrm{~m}, 4 \mathrm{H}), 1.07-1.37(\mathrm{~m}, 14 \mathrm{H}), 1.69-1.81(\mathrm{~m}, 8 \mathrm{H}), 2.34(\mathrm{tt}, 2 \mathrm{H}, J=12.2$, $3.3 \mathrm{~Hz}), 5.01$ (s, 2 H), $7.06-7.10(\mathrm{~m}, 4 \mathrm{H}), 7.24-7.31(\mathrm{~m}, 8 \mathrm{H}), 7.53(\mathrm{dd}, 2 \mathrm{H}, J=8.5,1.8 \mathrm{~Hz}), 7.86$ (d, $2 \mathrm{H}, J=8.5 \mathrm{~Hz}$), $7.90(\mathrm{~d}, 2 \mathrm{H}, J=8.9 \mathrm{~Hz}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta / \mathrm{ppm}=14.4,20.0,33.5$, $34.3,37.0,39.7,44.3,111.0,117.6,121.9,124.0,127.2,127.4,128.6,128.9,131.2,133.7,138.6$, 140.4, 147.2, 153.2. HRMS m / z calcd. for $\mathrm{C}_{50} \mathrm{H}_{54} \mathrm{O}_{2}$: 686.41238; found: 686.41173. Anal. calcd. (\%) for $\mathrm{C}_{50} \mathrm{H}_{54} \mathrm{O}_{2}$: C 87.42, H 7.92; found: C 87.30, H 7.90 .
($\mathbf{)}$)-2,2‘-Dihydroxy-7,7'-bis-((4-(4-propylcyclohexyl)phenyl)ethinyl)-1,1'-binaphthyl (16f) from 5 f

$16 f$
Reaction time: 5 h ; yield: 1.80 g (62\%); white solid, recrystallization (both toluene and ethanol).
HPLC (\%): 99.7. MS (EI): $m / z(\%)=734$ (100) [M+], 367 (5) [M+-367], 83 (6) [M+-651], 69 (10) [$\left.\mathrm{M}^{+}-665\right], 55(10)\left[\mathrm{M}^{+}-679\right] .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta / \mathrm{ppm}=0.92(\mathrm{t}, 6 \mathrm{H}, \mathrm{J}=7.2 \mathrm{~Hz}$), $0.98-1.14$ (m, 4 H), $1.18-1.50(\mathrm{~m}, 14 \mathrm{H}), 1.81-1.94(\mathrm{~m}, 8 \mathrm{H}), 2.40-2.53(\mathrm{~m}, 2 \mathrm{H}), 5.06(\mathrm{~s}, 2 \mathrm{H}), 7.10-7.19$ (m, 4 H), $7.31-7.35(\mathrm{~m}, 2 \mathrm{H}), 7.36-7.45(\mathrm{~m}, 6 \mathrm{H}), 7.52$ (dd, $2 \mathrm{H}, J=8.4,1.5 \mathrm{~Hz}$), $7.89(\mathrm{~d}, 2 \mathrm{H}$, $J=8.4 \mathrm{~Hz}), 8.00(\mathrm{~d}, 2 \mathrm{H}, J=8.9 \mathrm{~Hz}) .{ }^{13} \mathrm{C} \mathbf{N M R}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta / \mathrm{ppm}=14.4,20.0,33.5,34.1,37.0$, $39.7,44.6,89.1,90.7,110.4,118.4,120.2,122.8,126.8,127.1,127.1,128.6,128.8,131.4,131.6$, 133.3, 148.4, 153.4. HRMS m / z calcd. for $\mathrm{C}_{54} \mathrm{H}_{54} \mathrm{O}_{2}$: 734.41238; found: 734.41215. Anal. calcd. (\%) for $\mathrm{C}_{54} \mathrm{H}_{54} \mathrm{O}_{2}$: C 88.24, H 7.41; found: C 87.80, H 7.30.
(\pm)-2,2‘-Dihydroxy-7,7'-bis-(4-methylsulfanyl-phenylethinyl)-1,1'-binaphthyl (16g) from 5g

16 g
Reaction time: 5 h ; yield: 1.43 g (66%); white solid, recrystallization (both toluene and ethanol).
HPLC (\%): 96.4. MS (EI): m/z (\%) = 578 (11) $\left[\mathrm{M}^{+}\right], 372$ (6) [$\left.\mathrm{M}^{+}-206\right], 330$ (6) [$\left.\mathrm{M}^{+}-248\right], 318$ (18)
[$\left.\mathrm{M}^{+}-260\right], 304$ (100) [$\left.\mathrm{M}^{+}-274\right]$, 292 (12) [$\left.\mathrm{M}^{+}-286\right], 275$ (5) [$\left.\mathrm{M}^{+}-303\right], 248$ (18) [$\left.\mathrm{M}^{+}-330\right], 231$ (6)
[$\left.\mathrm{M}^{+}-347\right], 219$ (19) [$\left.\mathrm{M}^{+}-359\right], 189$ (16) [$\left.\mathrm{M}^{+}-389\right], 165$ (11) [$\left.\mathrm{M}^{+}-413\right], 152$ (17) [$\left.\mathrm{M}^{+}-426\right], 142$ (40)
[$\left.\mathrm{M}^{+}-436\right], 127$ (21) [$\left.\mathrm{M}^{+}-451\right], 101$ (16) [$\left.\mathrm{M}^{+}-477\right], 95$ (11) [$\left.\mathrm{M}^{+}-483\right], 86(31)$ [$\left.\mathrm{M}^{+}-492\right], 69(37)$ [$\left.\mathrm{M}^{+}-509\right]$,
55 (11) [$\left.\mathrm{M}^{+}-523\right]$, 41 (53) [$\left.\mathrm{M}^{+}-537\right]$, 28 (7) [$\left.\mathrm{M}^{+}-558\right]$. ${ }^{1} \mathrm{H}$ NMR (500 MHz , DMSO): $\delta / \mathrm{ppm}=2.46$ (s, 6 H), $7.07-7.12(\mathrm{~m}, 2 \mathrm{H}), 7.17-7.23(\mathrm{~m}, 4 \mathrm{H}), 7.34-7.44(\mathrm{~m}, 8 \mathrm{H}), 7.87-8.00(\mathrm{~m}, 4 \mathrm{H}), 9.50$ (s, 2 H). ${ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO): $\delta / \mathrm{ppm}=14.2,89.3,90.1,114.8,118.0,119.6,119.8,124.7$, 125.5, 127.0, 127.6, 128.7, 129.0, 131.7, 133.7, 139.6, 153.8. HRMS m/z calcd. for $\mathrm{C}_{38} \mathrm{H}_{26} \mathrm{O}_{2} \mathrm{~S}_{2}$: 578.13742; found: 578.13613. Anal. calcd. (\%) for $\mathrm{C}_{38} \mathrm{H}_{26} \mathrm{O}_{2} \mathrm{~S}_{2}$: C 78.86, H 4.53; found: C 78.10, H 4.50 .

Preparation of the 7,7'-disubstituted methylenedioxy-bridged binaphthyls

Typical procedure: (土)-2,2'-Methylenedioxy-7,7'-di(2-naphthyl)-1,1'-binaphthyl (17a)

17a
A mixture of 16a ($1.00 \mathrm{~g}, 1.90 \mathrm{mmol}$), diiodomethane ($1.49 \mathrm{~g}, 5.60 \mathrm{mmol}$), potassium carbonate ($1.54 \mathrm{~g}, 11.1 \mathrm{mmol}$) and 50 mL acetone was stirred and heated under reflux

20 h . After cooling down, the reaction mixture was poured onto water (100 mL) and the organic materials were extracted with MTBE (100 mL). The organic phase was separated, washed with water ($1 \times 50 \mathrm{~mL}$) and dried over anhydrous sodium sulfate. The organic solvent was removed under reduced pressure and the resulting yellow solid was purified by column chromatography using toluene as eluent. Recrystallization from a mixture of heptane/toluene (2:1) afforded 17a ($0.52 \mathrm{~g}, 50 \%$) as a white solid.

HPLC (\%): 99.3. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta / \mathrm{ppm}=5.77$ (s, 2 H), $7.33-7.40(\mathrm{~m}, 4 \mathrm{H}), 7.48-7.54$ (m, 4 H), $7.61-7.73(\mathrm{~m}, 6 \mathrm{H}), 7.80-7.91(\mathrm{~m}, 4 \mathrm{H}), 7.98-8.11(\mathrm{~m}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz , CDCl_{3}): $\delta / \mathrm{ppm}=103.3,121.1,125.0,125.5,125.9,126.1,126.3,126.3,127.5,128.1,128.4,129.3$, 130.2, 131.1, 132.5, 132.5, 133.5, 138.3, 138.8, 151.9. HRMS m/z calcd. for $\mathrm{C}_{41} \mathrm{H}_{26} \mathrm{O}_{2}$: 550.19328 ; found: 550.19216. Anal. calcd. (\%) for $\mathrm{C}_{41} \mathrm{H}_{26} \mathrm{O}_{2}$: C 89.43, H 4.76; found: C 88.80, H 4.60.
(\pm)-7,7'-Bis(3,5-di-tert.-butylphenyl)-2,2'-methylenedioxy-1,1'-binaphthyl (17b) from 16b

17b
Yield: $0.53 \mathrm{~g}(58 \%)$; white solid, recrystallization from acetone.
HPLC (\%): 99.2. MS (EI): $m / z(\%)=674$ (100) [M+], 646 (22) [M+-28], 457 (5) [M+217], 322 (13) [$\left.\mathrm{M}^{+}-352\right], 308$ (6) [$\left.\mathrm{M}^{+}-366\right], 287(5)\left[\mathrm{M}^{+} 387\right], 259$ (6) [$\left.\mathrm{M}^{+}-415\right], 231$ (8) [$\left.\mathrm{M}^{+}-443\right], 57$ (99) [$\left.\mathrm{M}^{+}-617\right]$. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta / \mathrm{ppm}=1.11(\mathrm{~s}, 36 \mathrm{H}), 5.74(\mathrm{~s}, 2 \mathrm{H}), 7.20-7.24(\mathrm{~m}, 6 \mathrm{H}), 7.45(\mathrm{~d}, 2 \mathrm{H}$, $J=8.7 \mathrm{~Hz}), 7.76$ (dd, $2 \mathrm{H}, J=8.5,1.8 \mathrm{~Hz}$), $7.90(\mathrm{~d}, 2 \mathrm{H}, J=1.7 \mathrm{~Hz}), 7.98$ (dd, $4 \mathrm{H}, J=11.7,8.6 \mathrm{~Hz})$. ${ }^{13}$ C NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta / \mathrm{ppm}=31.3,34.8,103.2,120.7,121.4,121.6,125.0,125.3,126.3$, 128.6, 129.8, 130.8, 132.4, 139.7, 139.9, 150.9, 151.6. HRMS m/z calcd. for $\mathrm{C}_{49} \mathrm{H}_{54} \mathrm{O}_{2}: 674.41238$; found: 674.41119. Anal. calcd. (\%) for $\mathrm{C}_{49} \mathrm{H}_{54} \mathrm{O}_{2}$: C 87.20, H 8.06; found: C 87.10, H 8.00.
(\pm)-7,7'-Di(1-adamantyl)-6,6'-dimethoxy-2,2'-methylenedioxy-1,1'-binaphthyl (17c) from 16c

17c
Yield: $0.50 \mathrm{~g}(70 \%)$; white solid, recrystallization from ethanol.

HPLC (\%): 99.4. MS (EI): $m / z(\%)=626$ (100) $\left[\mathrm{M}^{+}\right]$, 598 (15) [$\left.\mathrm{M}^{+}-28\right], 313$ (10) [$\left.\mathrm{M}^{+}-313\right], 135$ (94) [$\left.\mathrm{M}^{+}-491\right], 107$ (16) [$\left.\mathrm{M}^{+}-519\right], 93(28)\left[\mathrm{M}^{+}-533\right], 67$ (11) [$\left.\mathrm{M}^{+}-559\right], 55(6)\left[\mathrm{M}^{+}-571\right] .{ }^{1} \mathbf{H}$ NMR (500 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta / \mathrm{ppm}=1.54-1.60(\mathrm{~m}, 12 \mathrm{H}), 1.77-1.81(\mathrm{~m}, 6 \mathrm{H}), 1.82-1.89(\mathrm{~m}, 12 \mathrm{H}), 3.90(\mathrm{~s}, 6 \mathrm{H})$, $5.55(\mathrm{~s}, 2 \mathrm{H}), 7.13(\mathrm{~s}, 2 \mathrm{H}), 7.28-7.33(\mathrm{~m}, 4 \mathrm{H}), 7.73(\mathrm{~d}, 2 \mathrm{H}, J=8.6 \mathrm{~Hz}) .{ }^{13} \mathrm{C}$ NMR (100 MHz , CDCl_{3}): $\delta / \mathrm{ppm}=27.9,35.9,36.5,53.9,102.1,105.7,119.4,123.8,125.5,126.0,126.8,130.3,138.9$, 148.4, 156.0. HRMS m / z calcd. for $\mathrm{C}_{43} \mathrm{H}_{46} \mathrm{O}_{4}$: 626.33961; found: 626.33870. Anal. calcd. (\%) for $\mathrm{C}_{43} \mathrm{H}_{46} \mathrm{O}_{4}$: C 82.39, H 7.40; found: C 82.30, H 7.40.

(\pm)-2,2'-Methylenedioxy-7,7'-diphenanthren-9-yl-1,1'-binaphthyl (17d) from 16d

17d
The reaction was performed in DMF. Yield: 1.80 g (73%); white solid (purification after column chromatography: stirring in acetone).
HPLC (\%): 100. MS (EI): m/z (\%) = 650 (100) [M+ ${ }^{+}$, 622 (35) [$\left.\mathrm{M}^{+}-28\right], 445$ (8) [$\left.\mathrm{M}^{+}-205\right], 413$ (5) [$\left.\mathrm{M}^{+}-237\right], 325$ (8) [$\left.\mathrm{M}^{+}-325\right], 302$ (9) [$\left.\mathrm{M}^{+}-348\right], 289$ (7) [$\left.\mathrm{M}^{+}-361\right] .{ }^{1} \mathbf{H} \mathbf{N M R}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta / \mathrm{ppm}=$ 5.69 (s, $2 H$), $6.97-7.21(\mathrm{~m}, 4 \mathrm{H}), 7.29-7.61(\mathrm{~m}, 14 \mathrm{H}), 7.72-7.78(\mathrm{~m}, 2 \mathrm{H}), 7.86$ (d, 2 H , $J=8.4 \mathrm{~Hz}), 7.94(\mathrm{~d}, 2 \mathrm{H}, J=8.7 \mathrm{~Hz}), 8.53-8.68(\mathrm{~m}, 4 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta / \mathrm{ppm}=103.2$, 121.0, 122.4, 122.6, 126.2, 126.4, 126.5, 126.6, 126.6, 126.7, 126.9, 127.4, 127.7, 128.1, 128.8, 129.9, 130.3, 130.9, 131.0, 131.2, 132.4, 138.5, 138.9, 151.6. HRMS m/z calcd. for $\mathrm{C}_{49} \mathrm{H}_{30} \mathrm{O}_{2}$: 650.22458; found: 650.22439. Anal. calcd. (\%) for $\mathrm{C}_{49} \mathrm{H}_{30} \mathrm{O}_{2}$: C 90.44, H 4.65; found: C 90.40, H 4.80.
(\pm)-2,2'-Methylenedioxy-7,7'-bis-(4-(4-propyl-cyclohexyl)phenyl)-1,1'-binaphthyl (17e) from 16e

17e
Yield: 1.50 g (74\%); white crystals, recrystallization from heptane.
HPLC (\%): 100. MS (EI): $m / z(\%)=698$ (100) [M+ ${ }^{+}$, 670 (15) [$\left.\mathrm{M}^{+}-28\right]$, 83 (10) [$\left.\mathrm{M}^{+}-615\right]$, 69 (18) [$\left.\mathrm{M}^{+}-629\right], 55$ (10) [$\left.\mathrm{M}^{+}-643\right], 32$ (12) [$\left.\mathrm{M}^{+}-666\right], 28$ (55) [$\left.\mathrm{M}^{+}-670\right] .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta / \mathrm{ppm}=$ $0.80(\mathrm{t}, 6 \mathrm{H}, \mathrm{J}=7.3 \mathrm{~Hz}), 0.85-0.99(\mathrm{~m}, 4 \mathrm{H}), 1.06-1.37(\mathrm{~m}, 12 \mathrm{H}), 1.67-1.79(\mathrm{~m}, 10 \mathrm{H}), 2.31$ (tt, $2 \mathrm{H}, \mathrm{J}=12.3,3.1 \mathrm{~Hz}$), $5.64(\mathrm{~s}, 2 \mathrm{H}), 6.99-7.04(\mathrm{~m}, 4 \mathrm{H}), 7.17-7.22(\mathrm{~m}, 4 \mathrm{H}), 7.38(\mathrm{~d}, 2 \mathrm{H}$, $J=8.7 \mathrm{~Hz}), 7.64(\mathrm{dd}, 2 \mathrm{H}, J=8.5,1.7 \mathrm{~Hz}), 7.74(\mathrm{~d}, 2 \mathrm{H}, J=1.7 \mathrm{~Hz}), 7.91(\mathrm{dd}, 4 \mathrm{H}, J=8.6,7.4 \mathrm{~Hz})$. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta / \mathrm{ppm}=14.4,20.0,33.5,34.2,34.3,37.0,39.7,44.2,103.2,120.8,124.9$, 125.0, 126.3, 127.2, 127.3, 129.0, 130.1, 130.9, 132.4, 138.6, 139.0, 147.0, 151.7. HRMS m / z calcd.
for $\mathrm{C}_{51} \mathrm{H}_{54} \mathrm{O}_{2}$: 698.41238; found: 698.41143. Anal. calcd. (\%) for $\mathrm{C}_{51} \mathrm{H}_{54} \mathrm{O}_{2}$: C 87.64, H 7.79; found: C 87.50, H 7.70.
(土)-2,2'-Methylenedioxy-7,7'-bis-((4-(4-propylcyclohexyl)phenyl)ethynyl)-1,1'-binaphthyl
(17f) from $16 f$

17f
The reaction was performed in DMF. Yield: $1.10 \mathrm{~g}(77 \%)$; white solid, recrystallization from 1-chlorobutane.
 [$\left.\mathrm{M}^{+}-663\right], 69$ (14) [$\left.\mathrm{M}^{+}-677\right], 55$ (12) [$\left.\mathrm{M}^{+}-691\right] .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta / \mathrm{ppm}=0.93(\mathrm{t}, 6 \mathrm{H}$, $J=7.3 \mathrm{~Hz}), 1.00-1.11(\mathrm{~m}, 4 \mathrm{H}), 1.19-1.48(\mathrm{~m}, 14 \mathrm{H}), 1.83-1.92(\mathrm{~m}, 8 \mathrm{H}), 2.37-2.51(\mathrm{~m}, 2 \mathrm{H})$, 5.70 (s, 2 H), $7.11-7.16(\mathrm{~m}, 4 \mathrm{H}), 7.35-7.39(\mathrm{~m}, 4 \mathrm{H}), 7.50(\mathrm{~d}, 2 \mathrm{H}, J=8.7 \mathrm{~Hz}), 7.58(\mathrm{dd}, 2 \mathrm{H}$, $J=8.5,1.5 \mathrm{~Hz}), 7.69-7.72(\mathrm{~m}, 2 \mathrm{H}), 7.93(\mathrm{~d}, 2 \mathrm{H}, J=8.5 \mathrm{~Hz}), 8.00(\mathrm{~d}, 2 \mathrm{H}, J=8.5 \mathrm{~Hz}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta / \mathrm{ppm}=14.4,20.0,33.5,34.1,37.0,39.7,44.6,89.2,90.4,103.1,120.4,121.4$, 121.7, 125.7, 126.8, 128.1, 128.5, 129.5, 130.3, 131.1, 131.6, 132.0, 148.3, 151.8. HRMS m / z calcd. for $\mathrm{C}_{55} \mathrm{H}_{54} \mathrm{O}_{2}$: 746.41238; found: 746.41240. Anal. calcd. (\%) for $\mathrm{C}_{55} \mathrm{H}_{54} \mathrm{O}_{2}$: C 88.43, H 7.29; found: C 87.50, H 7.30.
(\pm)-2,2'-Methylenedioxy-7,7'-bis-(4-methylsulfanyl-phenylethynyl)-1,1'-binaphthyl (17g) from $16 g$

17 g
The reaction was performed in DMF. Yield: 0.52 g (50\%); white solid (purification after column chromatography: stirring in acetone).
HPLC (\%): 98.0. MS (EI): m/z (\%) = 590 (100) [$\left.\mathrm{M}^{+}\right]$, 562 (23) [$\left.\mathrm{M}^{+}-28\right]$, 320 (5) [M+$\left.{ }^{+}-270\right]$, 295 (5) [$\left.\mathrm{M}^{+}-295\right], 233$ (5) [$\left.\mathrm{M}^{+}-357\right] .{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta / \mathrm{ppm}=2.23(\mathrm{~s}, 6 \mathrm{H}), 5.45(\mathrm{~s}, 2 \mathrm{H})$, $6.86-6.94(\mathrm{~m}, 4 \mathrm{H}), 7.06-7.14(\mathrm{~m}, 4 \mathrm{H}), 7.28(\mathrm{~d}, 2 \mathrm{H}, J=8.7 \mathrm{~Hz}), 7.34(\mathrm{dd}, 2 \mathrm{H}, J=8.5,1.5 \mathrm{~Hz})$, $7.39-7.43(\mathrm{~m}, 2 \mathrm{H}), 7.73(\mathrm{~d}, 2 \mathrm{H}, J=8.4 \mathrm{~Hz}), 7.79(\mathrm{~d}, 2 \mathrm{H}, J=8.6 \mathrm{~Hz}) .{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}): $\delta / \mathrm{ppm}=20.0,94.6,107.8,123.8,126.1,126.4,130.3,130.4,132.6,133.5,134.0,135.2$, 135.9, 136.6, 144.3, 156.6. HRMS m / z calcd. for $\mathrm{C}_{39} \mathrm{H}_{26} \mathrm{O}_{2} \mathrm{~S}_{2}$: 590.13742; found: 590.13656. Anal. calcd. (\%) for $\mathrm{C}_{39} \mathrm{H}_{26} \mathrm{O}_{2} \mathrm{~S}_{2}$: C 79.29, H 4.44; found: C 79.00, H 4.30.

Preparation of unsubstituted binaphthyls from commercially available (-)-BINOL

(-)-2,2'-Methylenedioxy-1,1'-binaphthyl (18)

18
The identical procedure as before gave $18(7.98 \mathrm{~g}, 79 \%)$ as colorless crystals; recrystallization from 2-propanol/toluene (5:1). Analytical data were identical with those reported in the literature. ${ }^{6}$
GC (\%): 100. MS (EI): $m / z(\%)=298(100)\left[M^{+}\right], 281(6)\left[M^{+}-17\right], 269(87)\left[M^{+}-29\right], 253(22)\left[M^{+}+45\right]$, 239 (42) [$\left.\mathrm{M}^{+}-59\right], 226$ (6) [$\left.\mathrm{M}^{+}-72\right], 213$ (6) [$\left.\mathrm{M}^{+}-85\right], 134$ (13) [$\left.\mathrm{M}^{+}-164\right], 119$ (17) [$\left.\mathrm{M}^{+}-179\right], 106$ (5) $\left[\mathrm{M}^{+}-192\right]^{[}[a]_{j}^{20}=+783\left(\mathrm{c}=8.15, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta / \mathrm{ppm}=5.69(\mathrm{~s}, 2 \mathrm{H}), 7.29$ (ddd, $2 \mathrm{H}, J=8.3,6.7,1.3 \mathrm{~Hz}$), $7.41-7.54(\mathrm{~m}, 6 \mathrm{H}), 7.89-8.00(\mathrm{~m}, 4 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz , CDCl_{3}): $\delta / \mathrm{ppm}=103.1,120.9,125.0,126.0,126.1,126.9,128.4,130.3,131.8,132.1$. HRMS m/z calcd. for $\mathrm{C}_{21} \mathrm{H}_{14} \mathrm{O}_{2}$: 298.09938 ; found: 298.09850 .
(-)-2,2'-Dimethoxy-1,1'-binaphthyl (19)

19
A mixture of (-)-BINOL ($10.0 \mathrm{~g}, 33.9 \mathrm{mmol}$), iodomethane ($13 \mathrm{~mL}, 209 \mathrm{mmol}$), potassium carbonate ($16.4 \mathrm{~g}, 119 \mathrm{mmol}$) and 150 mL acetone was stirred and heated under reflux for 20 h . After cooling down, the reaction mixture was poured onto water (250 mL). The insoluble material was filtered off and washed with water ($2 \times 50 \mathrm{~mL}$). The resulting white solid was dried under vacuum. Recrystallization from 1-chlorobutane afforded $19(8.90 \mathrm{~g}, 82 \%)$ as white crystals. Analytical data were identical with those reported in the literature. ${ }^{7}$
GC (\%): 98.4. MS (EI): $m / z(\%)=314$ (100) [M+], 268 (49) [$\left.\mathrm{M}^{+}-46\right]$, 255 (9) [$\left.\mathrm{M}^{+}-59\right], 239$ (18) [$\left.\mathrm{M}^{+}-75\right]$, 226 (9) $\left[\mathrm{M}^{+}-88\right] \cdot[\mathrm{cc}]_{\mathrm{E}}^{2 \mathrm{O}}=-93\left(\mathrm{c}=7.51, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta / \mathrm{ppm}=3.75(\mathrm{~s}, 6 \mathrm{H})$, $7.07-7.12$ (m, 2 H), 7.20 (ddd, $2 \mathrm{H}, J=8.1,6.7,1.3 \mathrm{~Hz}$), 7.30 (ddd, $2 \mathrm{H}, J=8.1,6.7,1.2 \mathrm{~Hz}$), 7.45 (d, $2 \mathrm{H}, J=9.1 \mathrm{~Hz}$), 7.85 (dd, $2 \mathrm{H}, J=8.3,0.9 \mathrm{~Hz}$), 7.96 (dd, $2 \mathrm{H}, J=9.1,0.7 \mathrm{~Hz}$). ${ }^{13} \mathrm{C}$ NMR (100 MHz , CDCl_{3}): $\delta / \mathrm{ppm}=56.9,114.2,119.6,123.5,125.2,126.3,127.9,129.2,129.4,134.0,155.0$. HRMS m / z calcd. for $\mathrm{C}_{22} \mathrm{H}_{18} \mathrm{O}_{2}$: 314.13068; found: 314.13017.

3. Separation of racemic binaphthyls into enantiomers

Racemic 17a was resolved by repeated SFC separation on a Chiralcel OD-H column by using a SFC minigram ($\mathrm{CO}_{2} / 2$-propanol $+0.5 \%$ DEA, $60: 40$; flow rate $0.5 \mathrm{~mL} / \mathrm{min} ; 75 \mathrm{mg} / 4 \mathrm{~mL}$ dioxane, total 7 injections). Evaporation of the solvents gave fraction $1\left(211 \mathrm{mg}, t_{r}=7.6 \mathrm{~min}, e e=98 \%\right)$ and fraction $2\left(200 \mathrm{mg}, \mathrm{tr}_{r}=16.7 \mathrm{~min}, e e=96 \%\right)$.
Racemic 16b was resolved by repeated SFC separation on a Chiralpak AS-H column by using a SFC minigram ($\mathrm{CO}_{2} /$ methanol, $85: 15$; flow rate $1.0 \mathrm{~mL} / \mathrm{min} ; 168 \mathrm{mg} / 2.5 \mathrm{~mL}$ methanol, total 13 injections). Evaporation of the solvents gave fraction $1\left(815 \mathrm{mg}, t_{r}=4.5 \mathrm{~min}, e e=93 \%\right)$ and fraction $2(858 \mathrm{mg}$, $t_{r}=7.4 \mathrm{~min}, e e=94 \%$).
Racemic 16c was resolved by repeated HPLC separation on a Chiralpak IA column by using a Laprep Sigma (n-heptane/2-propanol, $85: 15$; flow rate $0.8 \mathrm{~mL} / \mathrm{min} ; 125 \mathrm{mg} / 7 \mathrm{~mL} \mathrm{CH} \mathrm{Cl}_{2}$, total 24 injections). Evaporation of the solvents gave fraction $1\left(1490 \mathrm{mg}, t_{r}=9.1 \mathrm{~min}, e e=90 \%\right)$ and fraction $2(1270 \mathrm{mg}$, $\left.t_{r}=15.0 \mathrm{~min}, e e=98 \%\right)$.
Racemic 17d was resolved by repeated HPLC separation on a Chiralcel OD-H column by using a Laprep Sigma (n-heptane/2-propanol, $85: 15$; flow rate $0.8 \mathrm{~mL} / \mathrm{min} ; 100 \mathrm{mg} / 4 \mathrm{~mL} \mathrm{CH} 2 \mathrm{Cl}_{2}$, total 13 injections). Evaporation of the solvents gave fraction $1\left(540 \mathrm{mg}, t_{r}=11.8 \mathrm{~min}, e e=98 \%\right)$ and fraction 2 ($480 \mathrm{mg}, t_{r}=19.5 \mathrm{~min}, e e=90 \%$).
Racemic 17e was resolved by repeated SFC separation on a Chiralcel OD-H column by using a SFC minigram ($\mathrm{CO}_{2} / 2$-propanol, $75: 25$; flow rate $0.6 \mathrm{~mL} / \mathrm{min} ; 48 \mathrm{mg} / 0.9 \mathrm{~mL}$ dioxane, total 28 injections). Evaporation of the solvents gave fraction $1\left(482 \mathrm{mg}, t_{r}=4.7 \mathrm{~min}, e e=100 \%\right)$ and fraction $2(502 \mathrm{mg}$, $t_{r}=8.1 \mathrm{~min}, e e=94 \%$).
Racemic 17 f was resolved by repeated HPLC separation on a Chiralcel OD-H column by using a Laprep Sigma (n-heptane/ethanol, $10: 90$; flow rate $0.8 \mathrm{~mL} / \mathrm{min} ; 100 \mathrm{mg} / 5 \mathrm{~mL} \mathrm{CH} 2 \mathrm{Cl}_{2}$, total 9 injections). Evaporation of the solvents gave fraction $1\left(274 \mathrm{mg}, t_{r}=15.4 \mathrm{~min}, e e=97 \%\right)$ and fraction 2 ($228 \mathrm{mg}, t_{r}=20.4 \mathrm{~min}, e e=98 \%$).
Racemic $\mathbf{1 7 g}$ was resolved by repeated HPLC separation on a Chiralcel OD-H column by using a Laprep Sigma (n-hexane $/ 2$-propanol, $80: 20$; flow rate $0.8 \mathrm{~mL} / \mathrm{min} ; 100 \mathrm{mg} / 8 \mathrm{~mL}$ dioxane, total 5 injections). Evaporation of the solvents gave fraction 1 ($140 \mathrm{mg}, t_{r}=13.1 \mathrm{~min}, e e=94 \%$) and fraction $2\left(105 \mathrm{mg}, t_{r}=24.7 \mathrm{~min}, e e=90 \%\right)$.

4. Specific rotations

An Anton Paar MCP 500 polarimeter was used to determine the optical rotations of the synthesized binaphthyls. Conditions: D-line of a sodium lamp (589 nm), $20^{\circ} \mathrm{C}, \mathrm{c}=\left[\mathrm{mg} \mathrm{mL}^{-1}\right]$.
The absolute configurations of the methylenedioxy-bridged binaphthyls $17 \mathrm{a}-\mathrm{g}$ were not determined, so the sign of optical rotation was not taken into account.

Compound	Specific rotation [9
$\mathbf{1 7 a}$	$1325\left(\mathrm{c}=0.20, \mathrm{CH}_{2} \mathrm{Cl}_{2}, e e=98 \%\right)$
17b	$937\left(\mathrm{c}=5.22, \mathrm{CH}_{2} \mathrm{Cl}_{2}, e e=94 \%\right)$
17c	$607\left(\mathrm{c}=6.02, \mathrm{CH}_{2} \mathrm{Cl}_{2}, e e=98 \%\right)$
17d	$583\left(\mathrm{c}=5.46, \mathrm{CH}_{2} \mathrm{Cl}_{2}, e e=98 \%\right)$
$\mathbf{1 7 e}$	$932\left(\mathrm{c}=6.97, \mathrm{CH}_{2} \mathrm{Cl}_{2}, e e=100 \%\right)$
$\mathbf{1 7 f}$	$1522\left(\mathrm{c}=10.6, \mathrm{CH}_{2} \mathrm{Cl}_{2}, e e=98 \%\right)$
$\mathbf{1 7 g}$	$1449\left(\mathrm{c}=6.62, \mathrm{CH}_{2} \mathrm{Cl}_{2}, e e=94 \%\right)$
$\mathbf{1 8}$	$783\left(\mathrm{c}=8.15, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.
$\mathbf{1 9}$	$93\left(\mathrm{c}=7.51, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$

5. Helical Twisting Powers (HTP's)

The HTP's were measured in MLC-6260 (Merck, commercial nematic mixture of 16 liquid crystalline compounds) by the Grandjean-Cano method. After dissolving the chiral dopant in MLC-6260, the cholesteric phase (N^{*}) was inserted between a plano-convex lens and a glass plate. Both lens and plate were appropriately rubbed to obtain the necessary alignment. Then, the cholesteric pitch p (distance between observed disclination lines) was measured with an optical microscope in linearly polarized light. Due to the known dopant molar fraction c and enantiomeric excess r, the HTP-values (β) could be calculated with the following equation: $\beta=(p c r)^{-1}$.

Compound	$\mathrm{HTP}\left[\mu \mathrm{m}^{-1}\right](\mathrm{MLC}-6260)$
$\mathbf{1 7 a}$	65
17b	3
17c	14
17d	63
17e	102
$\mathbf{1 7 f}$	114
$\mathbf{1 7 g}$	56
$\mathbf{1 8}$	41
$\mathbf{1 9}$	4

The sign of β was not taken into account.

6. NMR spectra

[^0]

7. References

[1] T. R. Kelly, R. A. Silva, H. De Silva, S. Jasmin, Y. Zhao, J. Am. Chem. Soc. 2000, 122, 6935-6949.
[2] A. Efimov, T. Kumpulainen, H. Lemmetyinen, J. Ranta, J. Org. Chem. 2010, 75, 5178-5194.
[3] L. Wang, D. Tan, S. Liang, G. Liang, CN Patent 103755530 A, 2014.
[4] C. J. Wong, Y.-L. Zeller, A. D. Hunter, Z. Xu, Angew. Chem. Int. Ed. 2014, 53, 14438-14442.
[5] M. Noji, M. Nakajima, K. Koga, Tetrahedron Lett. 1994, 35, 7983-7984.
[6] Y. Li, M. Wang, A. Urbas, Q. Li, J. Mater. Chem. C. 2013, 1, 3917-3923.
[7] G. Gottarelli, G. P. Spada, J. Org. Chem. 1991, 56, 2096-2098.

[^0]:

