Taylor & Francis Group
Browse
lncn_a_1711524_sm3331.docx (140.2 kB)

In silico analysis of the promoter region of olfactory receptors in cattle (Bos indicus) to understand its gene regulation

Download (140.2 kB)
journal contribution
posted on 2020-02-07, 06:55 authored by Behailu Samuel, Hunduma Dinka

Identifications of transcription start sites (TSSs) and promoter regions are first step to understand the regulation mechanisms of gene expression and association with genetic variations in the regions. This analysis was conducted with the objectives to identify TSSs, determine the promoter regions, identify common candidate motifs and transcription factors (TFs), and search for CpG islands (CGIs) in cattle olfactory receptors (ORs) genes promoter regions. In the analysis, TSSs of cattle olfactory genes were first identified. The locations for 60% of the TSSs were below –500 bp relative to the start codon and five candidate motifs (MOR1, MOR2, MOR3, MOR4, and MOR5) were identified that are shared by at least 50% of the cattle ORs promoter input sequences from both strands. Among the five candidate motifs, MOR4 was revealed as the common promoter motif for 85.71% of cattle ORs genes that serves as binding sites for TFs involved in the expression regulation of these genes. MOR4 was also compared to registered motifs in publically available databases to see if they are similar to known regulatory motifs for TF by using the TOMTOM web application. Hence, it was revealed that MOR4 may serve as the binding site mainly for the Zinc finger (ZNF) TF gene family to regulate expression of cattle ORs genes. Further gene ontology analysis for MOR4 demonstrated ORs belong to the G-protein-coupled receptor superfamily and MOR4 tend to be located near the genes involved in the detection of chemical stimulus involved in sensory perception and in innate immune responses such as cytokine-mediated signaling. In silico digestion of cattle OR sequences was performed using restriction enzyme MspI. CGIs from OR10K1 and OR2L13 gene was found. In the present analysis, the poor CGIs observed might suggest their gene expression regulation pattern is in tissue specific manner.

Funding

We would like to acknowledge Adama Science and Technology University, School of Natural Resource, Department of Applied Biology for the financial support provided during this work.

History