### SUPPLEMENTARY MATERIAL

## Isolation and characterization of 2-pyridone alkaloids and alloxazines from Beauveria bassiana

W.J. Andrioli<sup>a,d</sup>, A.A. Lopes<sup>a,e</sup>, B.C. Cavalcanti<sup>b</sup>, C. Pessoa<sup>b</sup>, N.P.D. Nanayakkara<sup>c</sup> and J.K. Bastos<sup>a</sup>\*

<sup>a</sup>Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, 14040-903, Ribeirão Preto, SP, Brazil;
<sup>b</sup>Departamento de Fisiologia e de Farmacologia, Universidade Federal do Ceará, 3157, 60430-270, Fortaleza, CE, Brazil;
<sup>c</sup>National Center for Natural Products Research, University of Mississippi, Oxford, Mississippi 38677, United States;
<sup>d</sup>Laboratório de Produtos Bioativos, Universidade Federal do Rio de Janeiro, 27933-378, Macaé, RJ, Brazil;
<sup>e</sup>Unidade de Biotecnologia, Universidade de Ribeirão Preto, Av. Costábile Romano, 2201, 14096900, Ribeirão Preto, SP, Brazil

\*Corresponding author. Email: jkbastos@fcfrp.usp.br.

**Abstract:** Two novel compounds bearing heterocyclic nitrogen, 2-pyridone alkaloid (**1**) and alloxazine derivative (**2**), along with the known pretenellin B (**3**), pyridovericin (**4**) and lumichrome (**5**) were isolated from a culture of the entomopathogenic fungal strain *Beauveria bassiana*. The chemical structures of 2-pyridone alkaloid and alloxazine derivative were established on the basis of the interpretation of spectroscopic data. The isolated compounds were evaluated in a panel of five cancer cell lines and pyridovericin exhibited cytotoxicity (IC<sub>50</sub>,  $\mu$ M) against cancer cell lines: HL-60 (25.9 ± 0.3), HCT8 (34.6 ± 3.6), MDA-MB435 (34.8 ± 3.8) and SF295 (31.1 ± 0.6). Considering that other pyridone compounds display good cytotoxic activity, it would be suggested to obtain new semi synthetic derivatives of pyridovericin, for the development of new cytotoxic chemical entities.

Keywords: Alloxazines, Beauveria bassiana, entomopathogenic fungus, pyridone alkaloids

# Table of contents

|             |                                                                          | Page       |
|-------------|--------------------------------------------------------------------------|------------|
| Figure S1.  | <sup>1</sup> H NMR (500 MHz, DMSO) spectrum of the new compound <b>1</b> | S3         |
| Figure S2.  | NOESY 1D NMR spectrum of the new compound 1 in DMSO                      | S4         |
| Figure S3.  | TOCSY 1D NMR spectrum of the new compound 1 in DMSO                      | S5         |
| Figure S4.  | $^{13}$ C NMR (125 MHz, DMSO) spectrum of the new compound 1             | S6         |
| Figure S5.  | COSY NMR spectrum of the new compound 1 in DMSO                          | <b>S</b> 7 |
| Figure S6.  | HMQC NMR spectrum of the new compound 1 in DMSO                          | <b>S</b> 8 |
| Figure S7.  | HMBC NMR spectrum of the new compound 1 in DMSO                          | S9         |
| Figure S8.  | Mass spectra by HRMS (MS/MS) of 1.                                       | S10        |
| Figure S9   | Mass spectra by HRMS of 1.                                               | S11        |
| Figure S10. | <sup>1</sup> H NMR (500 MHz, DMSO) spectrum of the new compound <b>2</b> | S12        |
| Figure S11. | <sup>13</sup> C NMR (125 MHz, DMSO) spectrum of the new compound $2$     | S13        |
| Figure S12. | DEPT NMR spectrum of the new compound 2 in DMSO                          | S14        |
| Figure S13. | COSY NMR spectrum of the new compound 2 in DMSO                          | S15        |
| Figure S14. | HMQC NMR spectrum of the new compound <b>2</b> in DMSO                   | S16        |
| Figure S15. | HMBC NMR spectrum of the new compound 2 in DMSO                          | S17        |
| Figure S16. | Mass spectra of 2                                                        | S18        |
|             | Spectral data of new compounds                                           | S19        |
| Table S1.   | NMR Spectroscopic data (500 MHz) for alkaloid 1                          | S20        |
| Table S2.   | NMR Spectroscopic data (500 MHz) for compound 2                          | S21        |
|             | Spectral data of known compounds                                         | S22        |
| Figure S17. | Graphics of cytotoxicity assay                                           | S23        |



Figure S1. <sup>1</sup>H NMR (500 MHz, DMSO) spectrum of the new compound 1



Figure S2. NOESY 1D NMR spectrum of the new compound 1 in DMSO.



Figure S3. TOCSY 1D spectrum of the new compound 1 in DMSO.



Figure S4. <sup>13</sup>C NMR (125 MHz, DMSO) spectrum of the new compound 1.



Figure S5. COSY NMR spectrum of the new compound 1 in DMSO.



Figure S6. HMQC NMR spectrum of the new compound 1 in DMSO.



Figure S7. HMBC NMR spectrum of the new compound 1 in DMSO.



Figure S8. Mass spectra by HRMS of 1.



Figure S9. Mass spectra by HRMS of 1.



Figure S10. <sup>1</sup>H NMR (500 MHz, DMSO) spectrum of the new compound 2.



Figure S11. <sup>13</sup>C NMR (125 MHz, DMSO) spectrum of the new compound 2.



Figure S12. DEPT NMR spectrum of the new compound 2 in DMSO.



Figura S13. COSY NMR spectrum of the new compound 2 in DMSO.



Figura S14. HMQC NMR spectrum of the new compound 2 in DMSO.



Figura S15. HMBC NMR spectrum of the new compound 2 in DMSO.



Figure S16. Mass spectra by HRMS of 2.

*Pyridovericin-N-O-(4-O-methyl-β-D-glucopyranoside)* (1): pale yellow oil;  $[\alpha]^{25}_{D}$  -59.5 (*c* 0.02, MeOH); UV (MeOH)  $\lambda_{max}$  (log ε) 200 (2.92), 205 (2.94), 247 (2.74), 342 (2.59) nm; IR (KBr)  $v_{max}$  3360, 2875, 1672, 1569, 1320, 1034, 969 cm<sup>-1</sup>; <sup>1</sup>H NMR (500 MHz, DMSO-*d*<sub>6</sub>):  $\delta$  9.55 (1H, *s*, OH-4'), 8.03 (1H, *s*, H-6), 7.88 (1H, *d*, *J* = 15.0 Hz, H-8), 7.55 (1H, *d*, *J* = 15.0 Hz, H-9), 7.28 (2H, *d*, *J* = 8.4 Hz, H-2',6'), 6.78 (2H, *d*, *J* = 8.4 Hz, H-3',5'), 5.98 (1H, *d*, *J* = 9.4 Hz, H-11), 5.48 (1H, *s*, OH-2"), 5.33 (1H, *d*, *J* = 5.6 Hz, OH-3"), 4.97 (1H, *d*, *J* = 8.0 Hz, H-1"), 4.71 (1H, *t*, *J* = 5.6 Hz, OH-6"), 4.59 (1H, *t*, *J* = 5.4 Hz, OH-15), 3.57 (1H, *m*, H-6"), 3.48 (1H, *m*, H-6"), 3.41 (3H, *s*, H-4" (- OC*H*<sub>3</sub>)), 3.38 (1H, *m*, H-3"), 3.35 (2H, *m*, H-15), 3.28 (1H, *m*, H-5"), 3.21 (1H, *ddd*, *J* = 4.4, 8.0, 9.1 Hz, H-2"), 3.02 (1H, *t*, *J* = 9.1 Hz, H-4"), 2.52 (1H, *m*, H-12), 1.85 (3H, *s*, H-16), 1.57 (1H, *m*, H-13), 1.21 (1H, *m*, H-13), 0.80 (3H, *t*, *J* = 7.4 Hz, H-14) and <sup>13</sup>C NMR (125 MHz, DMSO-*d*<sub>6</sub>):  $\delta$  157.2 (C-2), 106.4 (C-3) 175.3 (C-4), 111.8 (C-5), 142.7 (C-6), 193.6 (C-7), 122.4 (C-8), 150.1 (C-9), 134.5 (C-10), 148.4 (C-11), 43.6 (C-12), 23.9 (C-13), 11.6 (C-14), 63.9 (C-15), 12.8 (C-16), 122.6 (C-1'), 130.4 (C-2',6'), 115.0 (C-3',5'), 157.0 (C-4'), 106.0 (C-1"), 72.3 (C-2"), 75.7 (C-3"), 78.7 (C-4"), 59.6 (C-4", - OCH<sub>3</sub>), 75.7 (C-5"), 60.3 (C-6"); HRMS *m*/z 562.2253 [M+H]<sup>+</sup> (calcd for C<sub>28</sub>H<sub>35</sub>NO<sub>11</sub> + H<sup>+</sup>, 562.2283).

*1-Methyl-11-hydroxylumichrome* (2): yellow powder; mp 321–322 °C; UV (MeOH)  $\lambda_{max}$  (log  $\varepsilon$ ) 200 (2.57), 244 (2.59), 251 (2.60), 339 (2.10), 420 (2.23) nm; IR (KBr)  $v_{max}$  2931, 1722, 1425, 1375, 1267, 733 cm<sup>-1</sup>;<sup>1</sup>H NMR (500 MHz, DMSO-*d*<sub>6</sub>):  $\delta$  11.96 (1H, *s*, NH-2), 8.07 (1H, *s*, H-6), 7.77 (1H, *s*, H-7), 5.51 (1H, *s*, OH-11), 4.70 (2H, *s*, H-11), 3.52 (3H, *s*,  $-NCH_3$ -1) 2.48 (3H, *s*, H-12) and <sup>13</sup>C NMR (125 MHz, DMSO-*d*<sub>6</sub>):  $\delta$  28.2 (-*NC*H<sub>3</sub>-1), 150.2 (C-2), 159.6 (C-3), 130.7 (C-4a), 142.9 (C-5a), 125.7 (C-6), 141.2 (C-7), 143.0 (C-8), 126.6 (C-9), 137.4 (C-9a), 146.7 (C-10a), 60.6 (C-11), 18.7 (C-12); HRMS *m/z* 273.0962 [M+H]<sup>+</sup> (calcd for C<sub>13</sub>H<sub>13</sub>N<sub>4</sub>O<sub>3</sub> + H<sup>+</sup>, 273.0982).

| position                 | pyridovericin- <i>N-O</i> -(4- <i>O</i> -methyl- $\beta$ -D-glucopyranoside) (1) <sup>a</sup> |                                    |                   |  |
|--------------------------|-----------------------------------------------------------------------------------------------|------------------------------------|-------------------|--|
| 1                        | $\delta_{\rm C}$ mult.                                                                        | $\delta_{\rm H} (J \text{ in Hz})$ | HMBC <sup>o</sup> |  |
| 1                        | N-O                                                                                           | -                                  | -                 |  |
| 2                        | 157.2, C                                                                                      | -                                  | -                 |  |
| 3                        | 106.4, C                                                                                      | -                                  | -                 |  |
| 4                        | 175.4, C                                                                                      | -                                  | -                 |  |
| 5                        | 111.8, C                                                                                      | -                                  | -                 |  |
| 6                        | 142.7, CH                                                                                     | 8.03, <i>s</i>                     | 4                 |  |
| 7                        | 193.7, C                                                                                      | -                                  | -                 |  |
| 8                        | 122.4, CH                                                                                     | 7.88, <i>d</i> (15.0)              |                   |  |
| 9                        | 150.1, CH                                                                                     | 7.55, <i>d</i> (15.0)              | 7                 |  |
| 10                       | 134.4, C                                                                                      | -                                  |                   |  |
| 11                       | 148.4, CH                                                                                     | 5.98, <i>d</i> (9.4)               | 9, 12, 16         |  |
| 12                       | 43.6, CH                                                                                      | 2.52, <i>m</i>                     | -                 |  |
| 13                       | 23.9, CH <sub>2</sub>                                                                         | 1.21, <i>m</i> ; 1.57, <i>m</i>    | 11, 12, 14, 15    |  |
| 14                       | 11.6, CH <sub>3</sub>                                                                         | 0.80, <i>t</i> (7.4)               | 12, 13            |  |
| 15                       | 63.9, CH <sub>2</sub>                                                                         | 3.35, <i>m</i>                     | 11, 12, 13        |  |
|                          |                                                                                               | 4.59, <i>t</i> (5.4) (OH)          | 15                |  |
| 16                       | 12.8, CH <sub>3</sub>                                                                         | 1.85, <i>s</i>                     | 9, 10, 11         |  |
| 1'                       | 122.6, C                                                                                      | -                                  | -                 |  |
| 2',6'                    | 130.3, C                                                                                      | 7.28, <i>d</i> (8.4)               | 5, 2', 3', 4'     |  |
| 3',5'                    | 115.0, C                                                                                      | 6.78, <i>d</i> (8.4)               | 1', 2', 3', 4'    |  |
| 4'- OH                   | 157.0, C                                                                                      | 9.55, <i>s</i>                     | 3', 5'            |  |
| 1 –N <i>O</i> -<br>sugar |                                                                                               |                                    |                   |  |
| 1″                       | 106.0,CH                                                                                      | 4.97, <i>d</i> (8.0)               | 3″                |  |
| 2''                      | 72.3,CH                                                                                       | 3.21, <i>ddd</i> (4.4, 8.0, 9.1)   | 1″                |  |
|                          |                                                                                               | 5.48, s (OH)                       |                   |  |
| 3″                       | 75.7,CH                                                                                       | 3.38, <i>m</i>                     | 2", 4"            |  |
|                          |                                                                                               | 5.33, <i>d</i> (5.6) (OH)          | 4''               |  |
| 4''                      | 78.7,CH                                                                                       | 3.02, <i>t</i> (9.1)               | 5", 6"            |  |
| 4-0CH <sub>3</sub>       | 59.5,CH <sub>3</sub>                                                                          | 3.41, <i>s</i>                     | 4''               |  |
| 5″                       | 75.6,CH                                                                                       | 3.28, <i>m</i>                     | 6''               |  |
| 6″                       | 60.3,CH <sub>2</sub>                                                                          | 3.48, <i>m</i> ; 3.57 <i>m</i>     | -                 |  |

## Table S1. NMR Spectroscopic data (500 MHz) for alkaloid 1.

4.71, t (5.6) (OH) 5", 6" <sup>a</sup>In DMSO- $d_{6}$ . <sup>b</sup>HMBC correlations are from hydrogen(s) stated to the indicated carbon.

|          | 1-methyl- $11$ -hydroxylumichrome ( $2$ ) <sup>a</sup> |                                              |                    |  |
|----------|--------------------------------------------------------|----------------------------------------------|--------------------|--|
| position | $\delta_{ m C}$ mult.                                  | $\delta_{ m H} \left( J 	ext{ in Hz}  ight)$ | HMBC <sup>o</sup>  |  |
| 1        | 28.2, N-CH <sub>3</sub>                                | 3.52, s                                      | 146.7, 150.2       |  |
| 2        | 150.2, C                                               | -                                            | -                  |  |
| 3        | NH                                                     | 11.96, s                                     | -                  |  |
| 4        | 159.6, C                                               | -                                            | -                  |  |
| 4a       | 130.7, C                                               | -                                            | -                  |  |
| 5        | Ν                                                      |                                              |                    |  |
| 5a       | 142.9, C                                               | -                                            | -                  |  |
| 6        | 125.7, CH                                              | 8.07, s                                      | 60.6, 141.2, 143.0 |  |
| 7        | 141.2, C                                               | -                                            |                    |  |
| 8        | 143.0, C                                               | -                                            |                    |  |
| 9        | 126.6, CH                                              | 7.77, s                                      | 18.7, 137.4, 143.0 |  |
| 9a       | 137.4, C                                               | -                                            | -                  |  |
| 10       | Ν                                                      |                                              |                    |  |
| 10a      | 146.7, C                                               | -                                            |                    |  |
| 11       | 60.6, CH <sub>2</sub>                                  | 4.70, s                                      | 125.7, 143.0       |  |
| 11 – OH  |                                                        | 5.51, s                                      |                    |  |
| 12       | 18.7, CH <sub>3</sub>                                  | 2.48, s                                      | 126.6, 143.0       |  |

Table S2. NMR Spectroscopic data (500 MHz) for compound 2.

<sup>a</sup>In DMSO-*d*<sub>6</sub>. <sup>b</sup>HMBC correlations are from hydrogen(s) stated to the indicated carbon.

#### Spectral data of known compounds

*Pretenellin B (3)*: yellow powder; mp 203–206 °C;  $[\alpha]^{25}_{D}$  -48.0 (*c* 0.02, MeOH); UV (MeOH) λ<sub>max</sub> (log ε) 201 (3.02), 226 (2.61), 246 (2.75), 336 (2.62) nm; IR (KBr) ν<sub>max</sub> 3403, 2963, 1661, 1611, 1578, 1325, 980. cm<sup>-1</sup>;<sup>1</sup>H NMR (500 MHz, DMSO-*d*<sub>6</sub>): δ 7.97 (1H, *d*, *J* = 15.0 Hz, H-8), 7.58 (1H, *d*, *J* = 15.0 Hz, H-9), 7.47 (1H, *s*, H-6), 7.28 (2H, *d*, *J* = 8.6 Hz, H-2',6'), 6.81 (2H, *d*, *J* = 8.6 Hz, H-3',5'), 5.85 (1H, *d*, *J* = 9.0 Hz, H-11), 2.56 (1H, *m*, H-12), 1.91 (3H, *s*, H-16), 1.46 (1H, *m*, H-13), 1.35 (1H, *m*, H-13), 1.03 (3H, *d*, *J* = 6.7 Hz, H-15), 0.88 (3H, *t*, *J* = 7.4 Hz, H-14) and <sup>13</sup>C NMR (125 MHz, DMSO-*d*<sub>6</sub>): δ 164.1 (C-2), 105.9 (C-3), 177.7 (C-4), 112.8 (C-5), 140.1 (C-6), 195.8 (C-7), 123.6 (C-8), 150.8 (C-9), 134.3 (C-10), 151.1 (C-11), 36.1 (C-12), 30.8 (C-13), 11.9 (C-14), 20.2 (C-15), 12.5 (C-16), 124.1 (C-1'),

131.0 (C-2',6', 115.7 (C-3',5'), 156.7 (C-4'); HRMS m/z 354.1702 [M+H]<sup>+</sup> (calcd for C<sub>21</sub>H<sub>24</sub>NO<sub>4</sub> + H<sup>+</sup>, 354.1700).

*Pyridovericin* (4): pale yellow powder; mp 201–204 °C;  $[α]^{25}_{D}$  -15.0 (*c* 0.3, MeOH); UV (MeOH)  $λ_{max}$  (log ε) 215 (2.73), 245 (2.56), 340 (2.38) nm; IR (KBr)  $v_{max}$  3470, 3373, 3100, 1679, 1604, 1471 992 cm<sup>-1</sup>;<sup>1</sup>H NMR (500 MHz, DMSO-*d*<sub>6</sub>):  $\delta$  11.60 (1H, *sl*, NH-1), 9.45 (1H, *s*, OH-4'), 7.98 (1H, *d*, *J* = 15.0 Hz, H-8), 7.53 (1H, *s*, H-6), 7.52 (1H, *d*, *J* = 15.0 Hz, H-9), 7.25 (2H, *d*, *J* = 8.3 Hz, H-2',6'), 6.76 (2H, *d*, *J* = 8.3 Hz, H-3',5'), 5.93 (1H, *d*, *J* = 10.0 Hz, H-11), 4.57 (1H, *t*, *J* = 5.4 Hz, OH-15), 3.35 (2H, *m*, H-15), 2.48 (1H, *m*, H-12), 1.88 (3H, *s*, H-16), 1.59 (1H, *m*, H-13), 1.20 (1H, *m*, H-13), 0.80 (3H, *t*, *J* = 7.7 Hz, H-14) and <sup>13</sup>C NMR (125 MHz, DMSO-*d*<sub>6</sub>):  $\delta$  161.7 (C-2), 105.9 (C-3), 176.9 (C-4), 112.7 (C-5), 140.6 (C-6), 193.8 (C-7), 123.0 (C-8), 149.3 (C-9), 134.5 (C-10), 147.5 (C-11), 43.6 (C-12), 24.0 (C-13), 11.6 (C-14), 64.0 (C-15), 12.8 (C-16), 123.4 (C-1'), 130.1 (C-2',6'), 115.0 (C-3',5'), 156.7 (C-4'); HRMS *m*/z 370.1646 [M+H]<sup>+</sup> (calcd for C<sub>21</sub>H<sub>23</sub>NO<sub>5</sub> + H<sup>+</sup>, 370.1649).

*Lumichrome (5)*: yellow powder; mp 318–320 °C; UV (MeOH)  $\lambda_{max}$  (log  $\varepsilon$ ) 212 (2.17), 252 (2.54), 331 (2.55), 415 (2.21) nm; IR (KBr)  $\nu_{max}$  2920, 1710, 1432, 1390, 1280, 720 cm<sup>-1</sup>;<sup>1</sup>H NMR (500 MHz, DMSO-*d*<sub>6</sub>):  $\delta$  11.80 (1H, *s*, NH-1) 11.60 (1H, *s*, NH-2), 7.91 (1H, *s*, H-6), 7.70 (1H, *s*, H-7), 2.49 (3H, *s*, H-11), 2.47 (3H, *s*, H-12) and <sup>13</sup>C NMR (125 MHz, DMSO-*d*<sub>6</sub>):  $\delta$  150.0 (C-2), 160.6 (C-3), 130.1 (C-4a), 138.9 (C-5a), 125.8 (C-6), 144.7 (C-7), 138.4 (C-8), 128.7 (C-9), 146.5 (C-9a), 141.7 (C-10a), 20.2 (C-11), 19.5 (C-12); HRMS *m/z* 243.0863 [M+H]<sup>+</sup> (calcd for C<sub>12</sub>H<sub>11</sub>N<sub>4</sub>O<sub>2</sub> + H<sup>+</sup>, 243.0877).



Doxorrubicin (reference compound)



Pyridovericin (4)







1-Methyl-11-hydroxylumichrome (2)



Pyridovericin-*N*-O-(4-O-methyl- $\beta$ -D-glucopyranoside) (1)

Figure S17. Graphics of cytotoxicity assay.