Taylor & Francis Group
Browse
ixen_a_2007553_sm8534.pdf (154.44 kB)

Pirfenidone 5-hydroxylation is mainly catalysed by CYP1A2 and partly catalysed by CYP2C19 and CYP2D6 in the human liver

Download (154.44 kB)
journal contribution
posted on 2021-12-01, 05:40 authored by Yongjie Zhang, Rei Sato, Tatsuki Fukami, Masataka Nakano, Miki Nakajima

Pirfenidone is a first-line drug for the treatment of idiopathic pulmonary fibrosis. The primary metabolic pathways of pirfenidone in humans are 5-hydroxylation and subsequent oxidation to 5-carboxylpirfenidone. The aims of this study were to determine the cytochrome P450 isoforms responsible for pirfenidone 5-hydroxylation and to evaluate their contributions in human liver microsomes (HLM).

Among the recombinant P450 isoforms, CYP1A2, CYP2D6, CYP2C19, CYP2A6, and CYP2B6 were shown to catalyse the 5-hydroxylation of pirfenidone. Pirfenidone 5-hydroxylase activity by HLM was inhibited by α-naphthoflavone (by 45%), 8-methoxypsolaren (by 84%), tranylcypromine (by 53%), and quinidine (by 15%), which are CYP1A2, CYP1A2/CYP2A6/CYP2C19, CYP2A6/CYP2C19, and CYP2D6 inhibitors, respectively.

In 17 individual HLM donors, pirfenidone 5-hydroxylase activity was significantly correlated with phenacetin O-deethylase (r = 0.89, P < 0.001) and S-mephenytoin 4’-hydroxylase activities (r = 0.51, P < 0.05), which are CYP1A2 and CYP2C19 marker activities, respectively.

By using the relative activity factors, the contributions of CYP1A2, CYP2C19, and CYP2D6 to pirfenidone 5-hydroxylation in the human liver were 72.8%, 11.8%, and 8.9%, respectively.

In conclusion, we clearly demonstrated the predominant P450 involved in pirfenidone 5-hydroxylation in the human liver is CYP1A2, with CYP2C19 and CYP2D6 playing a minor role.

Pirfenidone is a first-line drug for the treatment of idiopathic pulmonary fibrosis. The primary metabolic pathways of pirfenidone in humans are 5-hydroxylation and subsequent oxidation to 5-carboxylpirfenidone. The aims of this study were to determine the cytochrome P450 isoforms responsible for pirfenidone 5-hydroxylation and to evaluate their contributions in human liver microsomes (HLM).

Among the recombinant P450 isoforms, CYP1A2, CYP2D6, CYP2C19, CYP2A6, and CYP2B6 were shown to catalyse the 5-hydroxylation of pirfenidone. Pirfenidone 5-hydroxylase activity by HLM was inhibited by α-naphthoflavone (by 45%), 8-methoxypsolaren (by 84%), tranylcypromine (by 53%), and quinidine (by 15%), which are CYP1A2, CYP1A2/CYP2A6/CYP2C19, CYP2A6/CYP2C19, and CYP2D6 inhibitors, respectively.

In 17 individual HLM donors, pirfenidone 5-hydroxylase activity was significantly correlated with phenacetin O-deethylase (r = 0.89, P < 0.001) and S-mephenytoin 4’-hydroxylase activities (r = 0.51, P < 0.05), which are CYP1A2 and CYP2C19 marker activities, respectively.

By using the relative activity factors, the contributions of CYP1A2, CYP2C19, and CYP2D6 to pirfenidone 5-hydroxylation in the human liver were 72.8%, 11.8%, and 8.9%, respectively.

In conclusion, we clearly demonstrated the predominant P450 involved in pirfenidone 5-hydroxylation in the human liver is CYP1A2, with CYP2C19 and CYP2D6 playing a minor role.

History