Probabilistic environmental risk assessment of fivpe nanomaterials (nano-TiO₂, nano-Ag, nano-ZnO, CNT, and Fullerenes)

Claudia Coll¹, Dominic Notter¹, Fadri Gottschalk², Tianyin Sun¹, Claudia Som¹, Bernd Nowack^{1*}

1) EMPA - Swiss Federal Laboratories for Material Science and Technology, Technology and Society Laboratory, Lerchenfeldstrasse 5, CH-9014 St. Gallen, Switzerland.

2) ETSS – Environmental, technical and scientific services, Chaflur 136B, CH- 7558 Strada, Switzerland

*Corresponding author:

E-mail address: <u>nowack@empa.ch</u> Tel.: +41 (0)58 765 76 92

Supporting Information

Figure S1: Probabilistic Species Sensitivity Distributions (PSSD) for fullerenes in the freshwater and soil compartments.

Figure S2: a) Probabilistic Species Sensitivity Distributions (PSSD) for CNTs in the sediment compartment. B) Comparison of predicted environmental concentrations (PEC) in blue and probabilistic species sensitivity distributions (pSSD) in red.

Figure S3: Comparison of predicted environmental concentration (PEC) in blue and probabilistic species sensitivity distribution (pSSD) in red for freshwater and sludge treated soils for fullerenes.

Figure S4: Predicted no-effect concentration distributions for TiO_2 , Ag, ZnO, fullerenes and CNT in freshwater.

Figure S5: Risk Characterization Factor distributions for TiO₂, Ag, ZnO, fullerenes and CNT in freshwater.

Figure S6: Predicted no-effect concentration distribution for TiO₂, Ag, ZnO, fullerenes and CNT in soil.

Figure S7: Risk Characterization Factor distributions for TiO_2 , Ag, ZnO, fullerenes and CNT in soil.

Figure S8: Predicted no-effect concentration distribution and risk quotient distribution for CNTs in sediment.

Author	ENM	Dose descriptor	Test organism	Concentration (µg/l)	Exposure time (h)	AF time	AF no- effect	Species sensitivity (µg/l)
Mouchet, et.al. [1]	CNT	HONEC	Ambystoma mexicanum	100,000.00	288	10	1	10,000.00
Templeton et al. [2]	CNT	NOEC	Amphiascus tenuiremis	1,600.00	720	1	1	1,600.00
Li et al. [3]	CNT	LC50	Ceriodaphnia dubia, crustacea	8,000.00	24	10	10	80.00
Alloy, et.al. [4]	CNT	LOEC	Ceriodaphnia dubia, crustacea	2,380.00	168	10	2	119.00
Kennedy et al. [5]	CNT	EC50	Ceriodaphnia dubia, crustacea	50,900.00	48	10	10	509.00
Long [6]	CNT	IC50	Chlorella sp.	12,400.00	96	1	10	1,240.00
Schwab et al. [7]	CNT	NOEC	Chlorella vulgaris	42.00	96	1	1	42.00
Schwab et al. [7]	CNT	NOEC	Chlorella vulgaris	180.00	96	1	1	180.00
Schwab et al. [7]	CNT	NOEC	Chlorella vulgaris	1,000.00	96	1	1	1,000.00
Schwab et al. [7]	CNT	NOEC	Chlorella vulgaris	3,000.00	96	1	1	3,000.00
Schwab et al. [7]	CNT	NOEC	Chlorella vulgaris	3,000.00	96	1	1	3,000.00
Asharani et al. [8]	CNT	NOEC	Danio rerio, Zebrafish	40,000.00	72	10	1	4,000.00
Cheng et al. [9]	CNT	LOEC	Danio rerio, Zebrafish	120,000.00	72	10	2	6,000.00
Zhu et al. [10]	CNT	EC50	Daphnia magna, crustacea	1,306.00	48	10	10	13.06
Edgington et al. [11]	CNT	LC50	Daphnia magna, crustacea	2,000.00	96	10	10	20.00
Zhu et al. [10]	CNT	EC50	Daphnia magna, crustacea	8,726.00	48	10	10	87.26
Alloy, et.al [4]	CNT	LOEC	Daphnia magna, crustacea	240.00	504	1	2	120.00

Table S1: Data for aquatic toxicity for nano-Ag, nano-TiO₂, nano-ZnO, CNT and Fullerenes.

Roberts et al. [12]	CNT	NOEC	Daphnia magna, crustacea	5,000.00	96	10	1	500.00
Schwab et al. [7]	CNT	NOEC	Pseudokirchneriella subcapitata	1,300.00	96	1	1	1,300.00
Schwab et al. [7]	CNT	NOEC	Pseudokirchneriella subcapitata	3,000.00	96	1	1	3,000.00
Bayat, et.al. [13]	CNT	LED	Saccharomyces cerevisiae	7,800.00	16	10	2	390.00
Zhu et al. [14]	CNT	NOEC	Stylonychia Mytilus	500.00	120	1	1	500.00
Ghafari et al. [15]	CNT	LOEC	Tetrahymena thermophila, protozoa	3,600.00	72	1	2	1,800.00
Mouchet, et.al. [16]	CNT	LOEC	Xenopus laevis, amphibian	10,000.00	288	10	2	500.00
Mouchet, et.al. [17]	CNT	LOEC	Xenopus laevis, amphibian	50,000.00	288	10	2	2,500.00
Fang, et.al. [18]	Fullere nes	MIC	Bacillus subtilis, bacteria	612.37	14	10	2	30.62
Zhu et al. [19]	Fullere nes	NOEC	Carassius auratus	40.00	768	1	1	40.00
Luo et al. [20]	Fullere nes	LOEC	Chlamydomonas reinhardtii, unicellular	1,000.00	24	10	2	50.00
Isaacson et al. [21]	Fullere nes	LC50	Danio rerio, Zebrafish	130.00	12	10	10	1.30
Usenko et al. [22]	Fullere nes	NOEC	Danio rerio, Zebrafish	100.00	24	10	1	10.00
Seda [23]	Fullere nes	LC50	Daphnia magna, crustacea	400.00	96	10	10	4.00
Tao, et.al. [24]	Fullere nes	LOEC	Daphnia magna, crustacea	200.00	48	10	2	10.00
Lovern et al. [25]	Fullere nes	NOEC	Daphnia magna, crustacea	200.00	48	10	1	20.00
Zhu et al. [26]	Fullere nes	NOEC	Daphnia magna, crustacea	500.00	192	10	1	50.00
Zhu et al. [27]	Fullere nes	EC50	Daphnia magna, crustacea	9,344.00	48	10	10	93.44
Oberdörster et al. [28]	Fullere nes	HONEC	Daphnia magna, crustacea	5,000.00	504	1	1	5,000.00
Ivask, et.al. [29]	Fullere nes	EC50	Escherichia coli	20,800,000.00	2	10	10	208,000.00

Oberdöster, et.al. [30]	Fullere nes	LOEC	Micropterus salmoides, Largemouth bass	500.00	48	10	2	25.00
Oberdörster et al. [28]	Fullere nes	HONEC	Oryzias latipes, japanese rice fish	500.00	96	10	1	50.00
Oberdörster et al. [28]	Fullere nes	HONEC	Pimephales promelas, fathead minnow	500.00	96	10	1	50.00
Fang, et.al. [18]	Fullere nes	MIC	Pseudomonas putida, bacteria	353.55	14	10	2	17.68
Gao, et.al. [31]	Nano- Ag	HONEC	ammonia-oxidizing bacteria (AOB)	200.00	408	1	1	200.00
Luo, et.al. [32]	Nano- Ag	HONEC	ammonia-oxidizing bacteria (AOB)	2,000.00	1080	1	1	2,000.00
Jin [33]	Nano- Ag	IC50	Bacillus subtilis, bacteria	3,000.00	24	10	10	30.00
Yoon et al. [34]	Nano- Ag	LC50	Bacillus subtilis, bacteria	11,000.00	24	10	10	110.00
Jin [33]	Nano- Ag	IC50	Bacillus subtilis, bacteria	46,000.00	24	10	10	460.00
Roh et al. [35]	Nano- Ag	LOEC	Caenorhabditis elegans, roundworm	100.00	72	10	2	5.00
Kim et al. [36]	Nano- Ag	NOEC	Caenorhabditis elegans, roundworm	1,000.00	24	10	10	10.00
Meyer et al. [37]	Nano- Ag	LOEC	Caenorhabditis elegans, roundworm	5,000.00	48	10	2	250.00
Kim et al. [36]	Nano- Ag	LC50	Caenorhabditis elegans, roundworm	55,000.00	24	10	10	550.00
Angel [38]	Nano- Ag	IC50	Ceriodaphnia dubia, crustacea	0.15	72	10	10	0.002
Gao et al. [39]	Nano- Ag	LC50	Ceriodaphnia dubia, crustacea	0.69	48	10	10	0.01
Gao et al. [39]	Nano- Ag	LC50	Ceriodaphnia dubia, crustacea	0.77	48	10	10	0.01
Angel [38]	Nano- Ag	IC50	Ceriodaphnia dubia, crustacea	2.00	72	10	10	0.02
Kennedy et al. [40]	Nano- Ag	LC50	Ceriodaphnia dubia, crustacea	3.00	48	10	10	0.03

Kennedy et al. [40]	Nano- Ag	LC50	Ceriodaphnia dubia, crustacea	4.80	48	10	10	0.05
Gao et al. [39]	Nano- Ag	LC50	Ceriodaphnia dubia, crustacea	6.18	48	10	10	0.06
Kennedy et al. [40]	Nano- Ag	LC50	Ceriodaphnia dubia, crustacea	8.80	48	10	10	0.09
Kennedy et al. [40]	Nano- Ag	LC50	Ceriodaphnia dubia, crustacea	10.00	48	10	10	0.10
Kennedy et al. [40]	Nano- Ag	LC50	Ceriodaphnia dubia, crustacea	11.00	48	10	10	0.11
Kennedy et al. [40]	Nano- Ag	LC50	Ceriodaphnia dubia, crustacea	19.00	48	10	10	0.19
Kennedy et al. [40]	Nano- Ag	LC50	Ceriodaphnia dubia, crustacea	26.00	48	10	10	0.26
Kennedy et al. [40]	Nano- Ag	LC50	Ceriodaphnia dubia, crustacea	26.70	48	10	10	0.27
Kennedy et al. [40]	Nano- Ag	LC50	Ceriodaphnia dubia, crustacea	29.00	48	10	10	0.29
Kennedy et al. [40]	Nano- Ag	LC50	Ceriodaphnia dubia, crustacea	38.10	48	10	10	0.38
Kennedy et al. [40]	Nano- Ag	LC50	Ceriodaphnia dubia, crustacea	41.40	48	10	10	0.41
Kennedy et al. [40]	Nano- Ag	LC50	Ceriodaphnia dubia, crustacea	45.00	48	10	10	0.45
Griffit et al. [41]	Nano- Ag	LC50	Ceriodaphnia dubia, crustacea	67.00	48	10	10	0.67
McLaughlin [42]	Nano- Ag	LC50	Ceriodaphnia dubia, crustacea	433.00	48	10	10	4.33
Nair, et.al. [43]	Nano- Ag	HONEC	Chironomus riparius	1,000.00	24	10	1	100.00
Navarro et al. [44]	Nano- Ag	EC50	Chlamydomonas reinhardtii, unicellular	0.86	5	10	10	0.01
Navarro [44]	Nano- Ag	EC50	Chlamydomonas reinhardtii, unicellular	3.53	1	10	10	0.04
Navarro [44]	Nano- Ag	EC50	Chlamydomonas reinhardtii, unicellular	6.10	1	10	10	0.06

Wang et al. [45]	Nano- Ag	EC50	Chydorus sphaericus (cladoceran species)	8.63	48	10	10	0.09
Wang et al. [45]	Nano- Ag	EC50	Chydorus sphaericus (cladoceran species)	12.94	48	10	10	0.13
Wang et al. [45]	Nano- Ag	EC50	Chydorus sphaericus (cladoceran species)	30.20	48	10	10	0.30
Massarsky [46]	Nano- Ag	LC50	Danio rerio, Zebrafish	1.18	96	10	10	0.01
Kaewamatawo ng [47]	Nano- Ag	LC50	Danio rerio, Zebrafish	1.78	48	10	10	0.02
Cunningham [48]	Nano- Ag	EC50	Danio rerio, Zebrafish	8.45	48	10	10	0.08
Cunningham [48]	Nano- Ag	EC50	Danio rerio, Zebrafish	34.50	48	10	10	0.35
Cunningham [48]	Nano- Ag	EC50	Danio rerio, Zebrafish	45.50	48	10	10	0.46
Cunningham [48]	Nano- Ag	EC50	Danio rerio, Zebrafish	61.00	48	10	10	0.61
Wang et al. [45]	Nano- Ag	EC50	Danio rerio, Zebrafish	84.14	48	10	10	0.84
Bilberg [49]	Nano- Ag	LC50	Danio rerio, Zebrafish	89.00	48	10	10	0.89
Wang et al. [45]	Nano- Ag	EC50	Danio rerio, Zebrafish	146.70	48	10	10	1.47
Wang et al. [45]	Nano- Ag	EC50	Danio rerio, Zebrafish	173.67	48	10	10	1.74
Cunningham [48]	Nano- Ag	EC50	Danio rerio, Zebrafish	205.00	48	10	10	2.05
Cunningham [48]	Nano- Ag	EC50	Danio rerio, Zebrafish	228.00	48	10	10	2.28
Cunningham [48]	Nano- Ag	EC50	Danio rerio, Zebrafish	351.00	48	10	10	3.51
Cunningham [48]	Nano- Ag	EC50	Danio rerio, Zebrafish	370.00	48	10	10	3.70
Muth-Köhne [50]	Nano- Ag	EC50	Danio rerio, Zebrafish	1,000.00	48	10	10	10.00
Muth-Köhne [50]	Nano- Ag	EC50	Danio rerio, Zebrafish	1,200.00	24	10	10	12.00
Muth-Köhne [50]	Nano- Ag	LC50	Danio rerio, Zebrafish	1,200.00	48	10	10	12.00

Muth-Köhne [50]	Nano- Ag	LC50	Danio rerio, Zebrafish	1,900.00	24	10	10	19.00
van Aerle [51]	Nano- Ag	LC50	Danio rerio, Zebrafish	1,912.80	48	10	10	19.13
Cunningham [48]	Nano- Ag	EC50	Danio rerio, Zebrafish	2,427.00	48	10	10	24.27
Cunningham [48]	Nano- Ag	EC50	Danio rerio, Zebrafish	3,043.00	48	10	10	30.43
Cunningham [48]	Nano- Ag	EC50	Danio rerio, Zebrafish	3,091.00	48	10	10	30.91
Cunningham [48]	Nano- Ag	EC50	Danio rerio, Zebrafish	3,455.00	48	10	10	34.55
Cunningham [48]	Nano- Ag	EC50	Danio rerio, Zebrafish	5,891.00	48	10	10	58.91
Cunningham [48]	Nano- Ag	EC50	Danio rerio, Zebrafish	6,922.00	48	10	10	69.22
Griffit et al. [41]	Nano- Ag	LC50	Danio rerio, Zebrafish	7,070.00	48	10	10	70.70
Asharani et al. [52]	Nano- Ag	LC50	Danio rerio, Zebrafish	35,355.34	72	10	10	353.55
Choi, et.al. [53]	Nano- Ag	LC50	Danio rerio, Zebrafish	250,000.00	24	10	10	2,500.00
Völker [54]	Nano- Ag	EC10	Daphnia galeata crustacea	11.00	48	10	2	0.55
Völker [54]	Nano- Ag	EC10	Daphnia galeata crustacea	3.45	504	1	2	1.73
Lee[55]	Nano- Ag	EC50	Daphnia magna, crustacea	0.75	48	10	10	0.01
Kim et al. [56]	Nano- Ag	EC50	Daphnia magna, crustacea	1.00	48	10	10	0.01
Zhao et al. [57]	Nano- Ag	LC50	Daphnia magna, crustacea	1.10	48	10	10	0.01
Allen, et.al. [58]	Nano- Ag	LC50	Daphnia magna, crustacea	1.10	48	10	10	0.01
Georgantzopou lou [59]	Nano- Ag	EC50	Daphnia magna, crustacea	1.20	48	10	10	0.01
Kim et al. [56]	Nano- Ag	EC50	Daphnia magna, crustacea	1.40	48	10	10	0.01

Poynton [60]	Nano- Ag	EC50	Daphnia magna, crustacea	1.80	24	10	10	0.02
Kennedy et al. [61]	Nano- Ag	LC50	Daphnia magna, crustacea	1.80	48	10	10	0.02
Zhao et al. [57]	Nano- Ag	LC50	Daphnia magna, crustacea	2.00	48	10	10	0.02
Asghari [62]	Nano- Ag	EC50	Daphnia magna, crustacea	2.00	48	10	10	0.02
Newton [63]	Nano- Ag	LC50	Daphnia magna, crustacea	2.14	48	10	10	0.02
Newton [63]	Nano- Ag	LC50	Daphnia magna, crustacea	2.27	48	10	10	0.02
Das, et.al. [64]	Nano- Ag	LC50	Daphnia magna, crustacea	2.75	48	10	10	0.03
Newton [63]	Nano- Ag	LC50	Daphnia magna, crustacea	3.16	48	10	10	0.03
Newton [63]	Nano- Ag	LC50	Daphnia magna, crustacea	3.41	48	10	10	0.03
Li et al. [65]	Nano- Ag	LC50	Daphnia magna, crustacea	3.46	48	10	10	0.03
Newton [63]	Nano- Ag	LC50	Daphnia magna, crustacea	3.48	48	10	10	0.03
Li et al. [65]	Nano- Ag	LC50	Daphnia magna, crustacea	4.00	48	10	10	0.04
Asghari [62]	Nano- Ag	EC50	Daphnia magna, crustacea	4.00	48	10	10	0.04
Jo [66]	Nano- Ag	EC50	Daphnia magna, crustacea	4.20	24	10	10	0.04
Kennedy et al. [61]	Nano- Ag	LC50	Daphnia magna, crustacea	5.30	48	10	10	0.05
Kennedy et al. [61]	Nano- Ag	LC50	Daphnia magna, crustacea	5.40	48	10	10	0.05
Kennedy et al. [61]	Nano- Ag	LC50	Daphnia magna, crustacea	5.40	48	10	10	0.05
Li et al. [65]	Nano- Ag	LC50	Daphnia magna, crustacea	6.00	48	10	10	0.06
Hoheisel [67]	Nano- Ag	LC50	Daphnia magna, crustacea	7.00	48	10	10	0.07

Das, et.al. [64]	Nano- Ag	NOEC	Daphnia magna, crustacea	0.75	48	10	1	0.08
Lee [55]	Nano- Ag	EC50	Daphnia magna, crustacea	7.98	48	10	10	0.08
Li et al. [65]	Nano- Ag	LC50	Daphnia magna, crustacea	10.00	48	10	10	0.10
Stensberg [68]	Nano- Ag	LC50	Daphnia magna, crustacea	10.10	72	10	10	0.10
Poynton [60]	Nano- Ag	EC50	Daphnia magna, crustacea	10.60	24	10	10	0.11
Kennedy et al. [61]	Nano- Ag	LC50	Daphnia magna, crustacea	11.10	48	10	10	0.11
Jo [66]	Nano- Ag	EC50	Daphnia magna, crustacea	12.40	24	10	10	0.12
Newton [63]	Nano- Ag	LC50	Daphnia magna, crustacea	13.08	48	10	10	0.13
Newton [63]	Nano- Ag	LC50	Daphnia magna, crustacea	14.04	48	10	10	0.14
Newton [63]	Nano- Ag	LC50	Daphnia magna, crustacea	14.09	48	10	10	0.14
Jo [66]	Nano- Ag	EC50	Daphnia magna, crustacea	14.30	24	10	10	0.14
Newton [63]	Nano- Ag	LC50	Daphnia magna, crustacea	14.81	48	10	10	0.15
Kennedy et al [61]	Nano- Ag	LC50	Daphnia magna, crustacea	14.90	48	10	10	0.15
Kennedy et al [61]	Nano- Ag	LC50	Daphnia magna, crustacea	17.70	48	10	10	0.18
Georgantzopou lou [59]	Nano- Ag	EC50	Daphnia magna, crustacea	20.00	48	10	10	0.20
Hoheisel [67]	Nano- Ag	LC50	Daphnia magna, crustacea	27.00	48	10	10	0.27
Zhao et al. [57]	Nano- Ag	LC50	Daphnia magna, crustacea	28.70	48	10	10	0.29
Völker [54]	Nano- Ag	EC10	Daphnia magna, crustacea	0.92	504	1	2	0.46
Kennedy et al. [61]	Nano- Ag	LC50	Daphnia magna, crustacea	97.00	48	10	10	0.97

Georgantzopou lou [59]	Nano- Ag	EC50	Daphnia magna, crustacea	120.00	48	10	10	1.20
Asghari [62]	Nano- Ag	EC50	Daphnia magna, crustacea	187.00	48	10	10	1.87
Zhao et al. [69]	Nano- Ag	LOEC	Daphnia magna, crustacea	5.00	504	1	2	2.50
Völker [54]	Nano- Ag	EC10	Daphnia magna, crustacea	60.30	48	10	2	3.02
Jo [66]	Nano- Ag	EC50	Daphnia magna, crustacea	531.50	24	10	10	5.32
Pokhrel [70]	Nano- Ag	EC50	Daphnia magna, crustacea	798.00	48	10	10	7.98
Jo [66]	Nano- Ag	EC50	Daphnia magna, crustacea	1,153.90	24	10	10	11.54
Jo [66]	Nano- Ag	EC50	Daphnia magna, crustacea	1,404.60	24	10	10	14.05
Jo [66]	Nano- Ag	EC50	Daphnia magna, crustacea	3,844.10	24	10	10	38.44
Zhao et al. [69]	Nano- Ag	HONEC	Daphnia magna, crustacea	500.00	48	10	1	50.00
Blinova et al. [71]	Nano- Ag	EC50	Daphnia magna, crustacea	40,200.00	48	10	10	402.00
Blinova et al. [71]	Nano- Ag	EC50	Daphnia magna, crustacea	49,400.00	48	10	10	494.00
Blinova et al. [71]	Nano- Ag	EC50	Daphnia magna, crustacea	263,300.00	48	10	10	2,633.00
Völker [54]	Nano- Ag	EC10	Daphnia pulex, crustacea	4.37	48	10	2	0.22
Griffit et al.	Nano- Ag	LC50	Daphnia pulex, crustacea	40.00	48	10	10	0.40
Völker [54]	Nano- Ag	EC10	Daphnia pulex, crustacea	2.25	504	1	2	1.13
Georgantzopou lou [59]	Nano- Ag	EC50	Desmodesmus subspicatus	34.00	72	1	10	3.40
Georgantzopou lou [59]	Nano- Ag	EC50	Desmodesmus subspicatus	330.00	72	1	10	33.00
Georgantzopou lou [59]	Nano- Ag	EC50	Desmodesmus subspicatus	2,200.00	72	1	10	220.00
Martinez- Castañon, et.al. [72]	Nano- Ag	міс	Escherichia coli	6.25	24	10	2	0.31

Pokhrel [73]	Nano- Ag	EC50	Escherichia coli	800.00	5	10	10	8.00
Pokhrel [73]	Nano- Ag	EC50	Escherichia coli	4,170.00	5	10	10	41.70
Pokhrel [73]	Nano- Ag	EC50	Escherichia coli	5,790.00	5	10	10	57.90
Yoon et al. [34]	Nano- Ag	LC50	Escherichia coli	31,000.00	24	10	10	310.00
Ivask, et.al. [29]	Nano- Ag	EC50	Escherichia coli	45,900.00	2	10	10	459.00
Funck, et.al. [74]	Nano- Ag	LC50	Gammarus fossaru, ampiphod	1.01	96	10	10	0.01
Gubbins, et.al. [75]	Nano- Ag	EC50	Lemna minor, duck weed	19.06	336	10	10	0.19
Kim et al. [76]	Nano- Ag	NOEC	Lemna paucicostata, duck weed	100.00	168	10	1	10.00
Ali, et.al. [77]	Nano- Ag	LC50	Lymnaea luteola, snail	48.10	96	10	10	0.48
Miao [78]	Nano- Ag	EC50	Ochromonas danica, chrysophyte	5.30	48	10	10	0.05
Govindasamy, et al [79]	Nano- Ag	LC50	Oreochromis mossambicus, tilapia	12,600.00	192	10	10	126.00
Kim et al. [56]	Nano- Ag	LC50	Oryzias latipes, japanese rice fish	28.00	96	10	10	0.28
Chae [80]	Nano- Ag	LC50	Oryzias latipes, japanese rice fish	34.60	96	10	10	0.35
Kim et al. [56]	Nano- Ag	LC50	Oryzias latipes, japanese rice fish	67.00	96	10	10	0.67
Wu, et.al. [81]	Nano- Ag	LC50	Oryzias latipes, japanese rice fish	1,030.00	48	10	10	10.30
Kashiwada, et.al. [82]	Nano- Ag	LC50	Oryzias latipes, japanese rice fish	1,390.00	96	10	10	13.90
Kim et al. [83]	Nano- Ag	LC50	Oryzias latipes, japanese rice fish	1,440.00	96	10	10	14.40
Kvitek et al. [84]	Nano- Ag	LC50	Paramecium caudatum	39,000.00	1	10	10	390.00
Kvitek et al. [84]	Nano- Ag	NOEC	Paramecium caudatum	25,000.00	168	1	1	25,000.00
Bilberg [85]	Nano- Ag	HONEC	Perca fluviatilis	300.00	20	10	1	30.00
Angel [38]	Nano- Ag	IC50	Phaeodactylum tricornutum	2,380.00	72	1	10	238.00

Angel [38]	Nano- Ag	IC50	Phaeodactylum tricornutum	3,690.00	72	1	10	369.00
Kennedy et al. [61]	Nano- Ag	LC50	Pimephales promelas, fathead minnow	9.00	48	10	10	0.09
Kennedy et al. [61]	Nano- Ag	LC50	Pimephales promelas, fathead minnow	19.20	48	10	10	0.19
Kennedy et al. [61]	Nano- Ag	LC50	Pimephales promelas, fathead minnow	41.00	48	10	10	0.41
Kennedy et al. [61]	Nano- Ag	LC50	Pimephales promelas, fathead minnow	55.20	48	10	10	0.55
Kennedy et al. [61]	Nano- Ag	LC50	Pimephales promelas, fathead minnow	60.70	48	10	10	0.61
Kennedy et al. [61]	Nano- Ag	LC50	Pimephales promelas, fathead minnow	64.10	48	10	10	0.64
Kennedy et al. [61]	Nano- Ag	LC50	Pimephales promelas, fathead minnow	69.90	48	10	10	0.70
Hoheisel [67]	Nano- Ag	LC50	Pimephales promelas, fathead minnow	89.40	96	10	10	0.89
Kennedy et al. [61]	Nano- Ag	LC50	Pimephales promelas, fathead minnow	125.80	48	10	10	1.26
Hoheisel [67]	Nano- Ag	EC20	Pimephales promelas, fathead minnow	46.10	168	10	2	2.31
Laban et al. [86]	Nano- Ag	LC50	Pimephales promelas, fathead minnow	1,250.00	96	10	10	12.50
Laban et al. [86]	Nano- Ag	LC50	Pimephales promelas, fathead minnow	1,303.84	96	10	10	13.04
Laban et al. [86]	Nano- Ag	LC50	Pimephales promelas, fathead minnow	1,360.00	96	10	10	13.60
Laban et al. [86]	Nano- Ag	LC50	Pimephales promelas, fathead minnow	9,400.00	96	10	10	94.00
Laban et al. [86]	Nano- Ag	LC50	Pimephales promelas, fathead minnow	9,981.98	96	10	10	99.82
Laban et al. [86]	Nano- Ag	LC50	Pimephales promelas, fathead minnow	10,600.00	96	10	10	106.00
Angel [38]	Nano- Ag	IC50	Pseudokirchneriella subcapitata	3.00	72	1	10	0.30
Angel [38]	Nano- Ag	IC50	Pseudokirchneriella subcapitata	19.50	72	1	10	1.95
Griffit et al. [41]	Nano- Ag	EC50	Pseudokirchneriella subcapitata	190.00	96	1	10	19.00
McLaughlin [42]	Nano- Ag	IC50	Pseudokirchneriella subcapitata	22,600.00	96	1	1	22,600.00
Jin [33]	Nano- Ag	IC50	Pseudomonas putida, bacteria	3,000.00	24	10	10	30.00
Jin [33]	Nano- Ag	IC50	Pseudomonas putida, bacteria	50,000.00	24	10	10	500.00
Wang et al. [45]	Nano- Ag	EC50	Raphidocelis subcapitata	896.39	4.5	10	10	8.96
Wang et al. [45]	Nano- Ag	EC50	Raphidocelis subcapitata	4,006.23	4.5	10	10	40.06
Wang et al. [45]	Nano- Ag	EC50	Raphidocelis subcapitata	21,142.19	4.5	10	10	211.42
Debabrata, et.al. [87]	Nano- Ag	MIC	Saccharomyces cerevisiae	48.51		10	2	2.43
Niazi, et.al. [88]	Nano- Ag	EC30	Saccharomyces cerevisiae	15,101.56	2	10	2	755.08

Bayat, et.al. [13]	Nano- Ag	LED	Saccharomyces cerevisiae	15,600.00	16	10	2	780.00
Jiang [89]	Nano- Ag	EC50	Spirodela polyrhiza, duckweed	4,540.00	72	10	10	45.40
Jiang [89]	Nano- Ag	EC50	Spirodela polyrhiza, duckweed	13,390.00	72	10	10	133.90
Jiang [89]	Nano- Ag	EC50	Spirodela polyrhiza, duckweed	13,670.00	72	10	10	136.70
Jiang [89]	Nano- Ag	EC50	Spirodela polyrhiza, duckweed	16,100.00	72	10	10	161.00
Jiang [89]	Nano- Ag	EC50	Spirodela polyrhiza, duckweed	17,330.00	72	10	10	173.30
Martinez- Castañon, et.al. [72]	Nano- Ag	МІС	Staphylococcus aureus	7.50	24	10	2	0.38
Burchardt[90]	Nano- Ag	EC50	Synechococcus, bacteria sp.	355.97	72	1	10	35.60
Juganson [91]	Nano- Ag	EC50	Tetrahymena thermophila, protozoa	205,000.00	24	10	10	2,050.00
Juganson [91]	Nano- Ag	EC50	Tetrahymena thermophila, protozoa	286,000.00	2	10	10	2,860.00
Blinova et al. [71]	Nano- Ag	LC50	Thamnocephalus platyurus	68,800.00	48	10	10	688.00
Blinova et al. [71]	Nano- Ag	LC50	Thamnocephalus platyurus	178,000.00	48	10	10	1,780.00
Blinova et al. [71]	Nano- Ag	LC50	Thamnocephalus platyurus	191,500.00	48	10	10	1,915.00
Blinova et al. [71]	Nano- Ag	LC50	Thamnocephalus platyurus	250,000.00	48	10	10	2,500.00
Blinova et al. [71]	Nano- Ag	LC50	Thamnocephalus platyurus	252,000.00	48	10	10	2,520.00
Cherchi et al. [92]	Nano- TiO2	EC50	Anabaena variabilis	620.00	96	1	10	62.00
Adams et al. [93]	Nano- TiO2	NOEC	Bacillus subtilis, bacteria	500,000.00	14 - 20	10	1	50,000.00
Clement, et.al. [94]	Nano- TiO2	EC50	Brachionus plicatili, rotifer	5,370.00	72	10	10	53.70
Wu, et.al. [95]	Nano- TiO2	LOEC	Caenorhabditis elegans, roundworm	50.00	24	10	2	2.50
Wang et al. [96]	Nano- TiO2	LC50	Caenorhabditis elegans, roundworm	80,000.00	24	10	10	800.00
Hall et al. [97]	Nano- TiO2	LC50	Ceriodaphnia dubia, crustacea	7,600.00	48	10	10	76.00
Hall et al. [97]	Nano- TiO2	IC25	Ceriodaphnia dubia, crustacea	8,500.00	168	10	10	85.00
Li et al. [3]	Nano- TiO2	EC50	Ceriodaphnia dubia, crustacea	42,000.00	48	10	10	420.00
Wang et al. [98]	Nano- TiO2	LC50	Ceriodaphnia dubia, crustacea	400,000.00	24	10	10	4,000.00
Li et al. [99]	Nano- TiO2	LC50	Chironomus dilutus	20,000.00	48	10	10	200.00
Wang et al. [100]	Nano- TiO2	NOEC	Chlamydomonas reinhardtii, unicellular	1,000.00	120	1	1	1,000.00
Gunawan, et.al. [101]	Nano- TiO2	EC50	Chlamydomonas reinhardtii, unicellular	100,000.00	192	1	10	10,000.00
Sadiq et al. [102]	Nano- TiO2	EC50	Chlorella sp.	16,120.00	72	1	10	1,612.00

Ji et al. [103]	Nano- TiO2	NOEC	Chlorella sp.	16,000.00	144	1	1	16,000.00
Cheng et al. [104]	Nano- TiO2	HONEC	Danio rerio, Zebrafish	500.00	4320	1	1	500.00
Xiong et al. [105]	Nano- TiO2	LC50	Danio rerio, Zebrafish	124,500.00	96	10	10	1,245.00
Yang [106]	Nano- TiO2	LC50	Danio rerio, Zebrafish	156,000.00	24	10	10	1,560.00
Bar-Ilan [107]	Nano- TiO2	LC50	Danio rerio, Zebrafish	300,000.00	24	10	10	3,000.00
Zhu et al. [108]	Nano- TiO2	HONEC	Danio rerio, Zebrafish	500,000.00	96	10	1	50,000.00
Ma, et.al [109]	Nano- TiO2	LC50	Daphnia magna, crustacea	29.80	48	10	10	0.30
Dabrunz et al. [110]	Nano- TiO2	EC50	Daphnia magna, crustacea	240.00	96	10	10	2.40
Zhu et al. [111]	Nano- TiO2	NOEC	Daphnia magna, crustacea	100.00	72	10	1	10.00
Clement, et.al. [94]	Nano- TiO2	EC50	Daphnia magna, crustacea	1,300.00	72	10	10	13.00
Dabrunz et al. [110]	Nano- TiO2	EC50	Daphnia magna, crustacea	3,800.00	72	10	10	38.00
Das, et.al. [64]	Nano- TiO2	LC50	Daphnia magna, crustacea	7,750.00	48	10	10	77.50
Zhu et al. [111]	Nano- TiO2	NOEC	Daphnia magna, crustacea	100.00	504	1	1	100.00
Warheit et al. [112]	Nano- TiO2	NOEC	Daphnia magna, crustacea	1,000.00	48	10	1	100.00
Lovern 2006[25]	Nano- TiO2	NOEC	Daphnia magna, crustacea	1,000.00	48	10	1	100.00
Kim et al. [113]	Nano- TiO2	LOEC	Daphnia magna, crustacea	500.00	504	1	2	250.00
Kim et al. [113]	Nano- TiO2	LOEC	Daphnia magna, crustacea	5,000.00	48	10	2	250.00
Jacobasch, et.al. [114]	Nano- TiO2	EC50	Daphnia magna, crustacea	2,930.00	504	1	10	293.00
Amiano [115]	Nano- TiO2	EC50	Daphnia magna, crustacea	29,700.00	48	10	10	297.00
Zhu et al. [27]	Nano- TiO2	EC50	Daphnia magna, crustacea	35,306.00	48	10	10	353.06
Das, et.al. [64]	Nano- TiO2	NOEC	Daphnia magna, crustacea	4,100.00	48	10	1	410.00
Jacobasch, et.al. [114]	Nano- TiO2	EC10	Daphnia magna, crustacea	4,520.00	504	1	2	2,260.00
Wiench et al. [116]	Nano- TiO2	NOEC	Daphnia magna, crustacea	3,000.00	504	1	1	3,000.00
Heinlaan et al. [117]	Nano- TiO2	LC50	Daphnia magna, crustacea	20,000,000.00	48	10	10	200,000.00
Hall et al. [97]	Nano- TiO2	LC50	Daphnia pulex, crustacea	9,200.00	48	10	10	92.00
Marcone [118]	Nano- TiO2	EC50	Daphnia similis, crustacea	12,500.00	48	10	10	125.00
Hund-Rinke et al. [119]	Nano- TiO2	EC50	Desmodesmus subspicatus	44,000.00	72	1	10	4,400.00
Bigorgne, et.al. [120]	Nano- TiO2	HONEC	Eisenia fetida, earthworm	10,000.00	24	10	1	1,000.00

Dasari, et.al. [121]	Nano- TiO2	LC50	Escherichia coli	1,680.00	0.5	10	10	16.80
Ivask, et.al. [29]	Nano- TiO2	EC50	Escherichia coli	20,000,000.00	2	10	10	200,000.00
Adams et al. [93]	Nano- TiO2	NOEC	Escherichia coli	100,000.00	14 - 20	10	1	10,000.00
Hu et al. [122]	Nano- TiO2	LD50	Escherichia coli	1,104,000.00	2	10	10	11,040.00
Bundschuh, et.al. [123]	Nano- TiO2	LOEC	Gammarus fossaru, ampiphod	200.00	168	10	2	10.00
Zhu et al. [124]	Nano- TiO2	NOEC	Haliotis diversicolor supertexta	2,000.00	10	10	1	200.00
Zhu et al. [124]	Nano- TiO2	EC50	Haliotis diversicolor supertexta	56,900.00	10	10	10	569.00
Li et al. [99]	Nano- TiO2	LC50	Hyalella azteca, amphipod	20,000.00	48	10	10	200.00
Li et al. [125]	Nano- TiO2	LC50	Hyalella azteca, amphipod	631,000.00	96	10	10	6,310.00
Kim et al. [76]	Nano- TiO2	NOEC	Lemna paucicostata, duck weed	125,000.00	168	10	1	12,500.00
Li et al. [99]	Nano- TiO2	LC50	Lumbriculus variegatus	20,000.00	48	10	10	200.00
Federici, et. Al. [126]	Nano- TiO2	HONEC	Oncorhynchus mykiss	1,000.00	168	10	1	100.00
Warheit et al. [112]	Nano- TiO2	NOEC	Oncorhynchus mykiss	1,000.00	96	10	1	100.00
Ma, et.al[109]	Nano- TiO2	LC50	Oryzias latipes, japanese rice fish	2,460.00	96	10	10	24.60
Li et al. [127]	Nano- TiO2	LC50	Paramecium multi- micronucleatum	7,215,200.00	48	1	10	721,520.00
Clement, et.al. [94]	Nano- TiO2	EC50	Phaeodactylum tricornutum	10,910.00	72	1	10	1,091.00
Hall et al. [97]	Nano- TiO2	IC25	Pimephales promelas, fathead minnow	452,000.00	168	10	10	4,520.00
Hall et al. [97]	Nano- TiO2	LC50	Pimephales promelas, fathead minnow	500,000.00	48	10	10	5,000.00
Jovanovic, et.al. [128]	Nano- TiO2	HONEC	Pimephales promelas, fathead minnow	1,000,000.00	168	10	1	100,000.00
Lee [129]	Nano- TiO2	NOEC	Pseudokirchneriella subcapitata	50.00	72	1	1	50.00
Lee [129]	Nano- TiO2	EC50	Pseudokirchneriella subcapitata	2,530.00	72	1	10	253.00
Aruoja et al. [130]	Nano- TiO2	NOEC	Pseudokirchneriella subcapitata	984.00	72	1	1	984.00
Hall et al. [97]	Nano- TiO2	IC25	Pseudokirchneriella subcapitata	1,500.00	96	1	1	1,500.00
Warheit et al. [112]	Nano- TiO2	EC50	Pseudokirchneriella subcapitata	16,000.00	72	1	10	1,600.00
Hartmann et al. [131]	Nano- TiO2	EC50	Pseudokirchneriella subcapitata	71,000.00	72	1	10	7,100.00
Metzler et al. [132]	Nano- TiO2	EC50	Pseudokirchneriella subcapitata	113,000.00	96	1	10	11,300.00
Bayat, et.al. [13]	Nano- TiO2	LED	Saccharomyces cerevisiae	7,800.00	16	10	2	390.00
Kasemets [133]	Nano- TiO2	HONEC	Saccharomyces cerevisiae	20,000,000.00	24	10	1	2,000,000.00

Sadiq et al. [102]	Nano- TiO2	EC50	Scenedesmus subspicatus	21,200.00	72	1	10	2,120.00
Velzeboer, et. Al. [134]	Nano- TiO2	HONEC	soil bacteria	100,000.00	168	1	1	100,000.00
Heinlaan et al. [117]	Nano- TiO2	NOEC	Thamnocephalus platyurus	20,000,000.00	24	10	1	2,000,000.00
Nations, et.al. [135]	Nano- TiO2	EC10	Xenopus laevis, amphibian	1,000,000.00	96	10	2	50,000.00
Li et al. [136]	Nano- ZnO	IC50	Bacillus subtilis, bacteria	280.00	24	10	10	2.80
Li et al. [136]	Nano- ZnO	IC50	Bacillus subtilis, bacteria	310.00	24	10	10	3.10
Li et al. [136]	Nano- ZnO	IC50	Bacillus subtilis, bacteria	3,300.00	24	10	10	33.00
Jones et al. [137]	Nano- ZnO	EC50	Bacillus subtilis, bacteria	188,000.00	10	10	10	1,880.00
Wu, et.al. [95]	Nano- ZnO	LOEC	Caenorhabditis elegans, roundworm	50.00	24	10	2	2.50
Wang et al. [96]	Nano- ZnO	LC50	Caenorhabditis elegans, roundworm	2,300.00	24	10	10	23.00
Ma et al. [138]	Nano- ZnO	EC50	Caenorhabditis elegans, roundworm	46,000.00	24	10	10	460.00
Ma et al. [139]	Nano- ZnO	LC50	Caenorhabditis elegans, roundworm	70,000.00	24	10	10	700.00
Gunawan, et.al. [101]	Nano- ZnO	EC50	Chlamydomonas reinhardtii, unicellular	10.00	192	1	10	1.00
Luo et al. [20]	Nano- ZnO	LOEC	Chlamydomonas reinhardtii, unicellular	1,000.00	24	10	2	50.00
Lin [140]	Nano- ZnO	IC50	Chlorella sp.	4,900.00	288	1	10	490.00
Ji et al. [103]	Nano- ZnO	NOEC	Chlorella sp.	5,000.00	144	1	1	5,000.00
Fabrega, et.al. [141]	Nano- ZnO	LOEC	Corophium volutator	200.00	2400	1	2	100.00
Zhu et al. [108]	Nano- ZnO	LC50	Danio rerio, Zebrafish	1,800.00	96	10	10	18.00
Yu [142]	Nano- ZnO	LC50	Danio rerio, Zebrafish	3,969.00	96	10	10	39.69
Xiong et al. [105]	Nano- ZnO	LC50	Danio rerio, Zebrafish	4,920.00	96	10	10	49.20
Zhao et al. [143]	Nano- ZnO	NOEC	Daphnia magna, crustacea	0.80	504	1	1	0.80
Zhu et al. [10]	Nano- ZnO	EC50	Daphnia magna, crustacea	622.00	48	10	10	6.22
Wiench et al. [116]	Nano- ZnO	EC50	Daphnia magna, crustacea	1,000.00	48	10	10	10.00
Lopes, et.al. [144]	Nano- ZnO	EC50	Daphnia magna, crustacea	125.00	504	1	10	12.50
Blinova et al. [145]	Nano- ZnO	EC50	Daphnia magna, crustacea	1,700.00	48	10	10	17.00
Naddafi, et.al. [146]	Nano- ZnO	LC50	Daphnia magna, crustacea	2,100.00	48	10	10	21.00
Blinova et al. [145]	Nano- ZnO	EC50	Daphnia magna, crustacea	2,600.00	48	10	10	26.00
Blinova et al. [145]	Nano- ZnO	EC50	Daphnia magna, crustacea	2,800.00	48	10	10	28.00

Heinlaan et al. [117]	Nano- ZnO	EC50	Daphnia magna, crustacea	3,200.00	48	10	10	32.00
Blinova et al. [145]	Nano- ZnO	EC50	Daphnia magna, crustacea	3,300.00	48	10	10	33.00
Blinova et al. [145]	Nano- ZnO	EC50	Daphnia magna, crustacea	3,400.00	48	10	10	34.00
Blinova et al. [145]	Nano- ZnO	EC50	Daphnia magna, crustacea	3,500.00	48	10	10	35.00
Heinlaan et al. [117]	Nano- ZnO	NOEC	Daphnia magna, crustacea	500.00	48	10	1	50.00
Blinova et al. [145]	Nano- ZnO	EC50	Daphnia magna, crustacea	9,000.00	48	10	10	90.00
Poynton et al. [147]	Nano- ZnO	LC10	Daphnia magna, crustacea	3,700.00	24	10	2	185.00
Dasari, et.al. [121]	Nano- ZnO	LC50	Escherichia coli	48.00	0.5	10	10	0.48
Emami- Karvani, et.al. [148]	Nano- ZnO	MIC	Escherichia coli	1,000.00	24	10	2	50.00
Li et al. [136]	Nano- ZnO	IC50	Escherichia coli	17,000.00	12	10	10	170.00
Hu et al. [122]	Nano- ZnO	LD50	Escherichia coli	21,100.00	2	10	10	211.00
Li et al. [136]	Nano- ZnO	IC50	Escherichia coli	34,000.00	12	10	10	340.00
Pokhrel[73]	Nano- ZnO	EC50	Escherichia coli	57,700.00	5	10	10	577.00
Ivask, et.al. [29]	Nano- ZnO	EC50	Escherichia coli	67,200.00	2	10	10	672.00
Adams et al. [93]	Nano- ZnO	EC50	Escherichia coli	1,240,000.00	14-20	10	10	12,400.00
Poynton et al. [149]	Nano- ZnO	LC50	Hyalella azteca, amphipod	78.50	96	10	10	0.79
Miller et al. [150]	Nano- ZnO	NOEC	Isochrysis galbana	500.00	96	1	1	500.00
Lin [151]	Nano- ZnO	IC50	Lolium perenne (ryegrass)	20,000.00	120	10	10	200.00
Lin [152]	Nano- ZnO	IC50	Lolium perenne (ryegrass)	51,000.00	288	10	10	510.00
Li et al. [127]	Nano- ZnO	LC50	Paramecium multi- micronucleatum	573,800.00	48	1	10	57,380.00
Franklin et al. [153]	Nano- ZnO	IC50	Pseudokirchneriella subcapitata	49.00	72	1	10	4.90
Aruoja et al. [130]	Nano- ZnO	NOEC	Pseudokirchneriella subcapitata	17.00	72	1	1	17.00
Lee [154]	Nano- ZnO	NOEC	Pseudokirchneriella subcapitata	50.00	72	1	1	50.00
Lin [151]	Nano- ZnO	IC50	Raphanus sativus, radish	50,000.00	120	10	10	500.00
Kasemets [133]	Nano- ZnO	EC50	Saccharomyces cerevisiae	143,868.00	24	10	10	1,438.68
Emami- Karvani, et.al. [148]	Nano- ZnO	MIC	Staphylococcus aureus	500.00	24	10	2	25.00
Jones et al. [137]	Nano- ZnO	MIC	Staphylococcus aureus	80,000.00	24	10	2	4,000.00

Jones et al. [137]	Nano- ZnO	МІС	Staphylococcus aureus	1,200,000.00	24	10	2	60,000.00
Mortimer et al. [155]	Nano- ZnO	EC50	Tetrahymena thermophila, protozoa	4,300.00	4	10	10	43.00
Mortimer et al. [155]	Nano- ZnO	EC50	Tetrahymena thermophila, protozoa	6,800.00	24	10	10	68.00
Blinova et al. [145]	Nano- ZnO	EC50	Tetrahymena thermophila, protozoa	9,400.00	24	10	10	94.00
Blinova et al. [145]	Nano- ZnO	EC50	Tetrahymena thermophila, protozoa	12,400.00	24	10	10	124.00
Blinova et al. [71]	Nano- ZnO	EC50	Tetrahymena thermophila, protozoa	26,500.00	24	10	10	265.00
Miller et al. [150]	Nano- ZnO	NOEC	Thalassiosira pseudonana	100.00	96	1	1	100.00
Wong [156]	Nano- ZnO	LC50	Thalassiosira pseudonana	3,280.00	96	1	10	328.00
Jarvis [157]	Nano- ZnO	NOEC	Thalassiosira weissflogii	10.00	72	1	1	10.00
Blinova et al. [145]	Nano- ZnO	LC50	Thamnocephalus platyurus	140.00	24	10	10	1.40
Heinlaan et al. [117]	Nano- ZnO	NOEC	Thamnocephalus platyurus	30.00	24	10	1	3.00
Blinova et al. [145]	Nano- ZnO	LC50	Thamnocephalus platyurus	1,100.00	24	10	10	11.00
Blinova et al. [145]	Nano- ZnO	LC50	Thamnocephalus platyurus	1,400.00	24	10	10	14.00
Blinova et al. [145]	Nano- ZnO	LC50	Thamnocephalus platyurus	1,500.00	24	10	10	15.00
Blinova et al. [145]	Nano- ZnO	LC50	Thamnocephalus platyurus	3,600.00	24	10	10	36.00
Blinova et al. [145]	Nano- ZnO	LC50	Thamnocephalus platyurus	5,300.00	24	10	10	53.00
Blinova et al. [145]	Nano- ZnO	LC50	Thamnocephalus platyurus	6,000.00	24	10	10	60.00
Nations, et.al. [135]	Nano- ZnO	EC10	Xenopus laevis, amphibian	1,300.00	96	10	2	65.00

Author	ENM	Dose descriptor	Test organism	Concentration (µg/kg)	Exposure time (h)	AF time	AF no- effect	Species sensitivity (µg/kg)
De La Torre- Roche [158]	CNT	HONEC	Curcubita pepo, zucchini	5,000,000.00	672	1	1	5,000,000.00
Scott- Fordsmand et al. [159]	CNT	EC50	Eisenia veneta, earthworm	176,000.00	672	1	10	17,600.00
De La Torre- Roche [158]	CNT	LOEC	Glycine max, soy bean	1,000,000.00	672	1	2	500,000.00
Chung et al. [160]	CNT	LOEC	microbial biomass (organic C and N)	500,000.00	480	1	2	250,000.00
Chung, et.al. [160]	CNT	HONEC	soil microbial community	50,000.00	264	1	1	50,000.00
Shrestha, et.al. [161]	CNT	HONEC	soil microbial community	1,000,000.00	2160	1	1	1,000,000.00
De La Torre- Roche [158]	CNT	HONEC	Solanum lycopersicu, tomato	5,000,000.00	672	1	1	5,000,000.00
De La Torre- Roche [158]	CNT	LOEC	Zea may, maize	500,000.00	672	1	2	250,000.00
De La Torre- Roche [158]	Fullerenes	HONEC	Curcubita pepo, zucchini	5,000,000.00	672	1	1	5,000,000.00
Scott- Fordsmand et al. [159]	Fullerenes	HONEC	Eisenia veneta, earthworm	1,000,000.00	672	1	1	1,000,000.00
Johansen et al. [162]	Fullerenes	EC10	fast growing soil microbacteria	50,000.00	3	10	2	2,500.00
De La Torre- Roche [158]	Fullerenes	LOEC	Glycine max, soy bean	500,000.00	672	1	2	250,000.00
Van der Ploeg et al. [163]	Fullerenes	NOEC	Lumbriculus rubellus (earthworm)	15,400.00	7824	1	1	15,400.00
Johansen et al. [162]	Fullerenes	EC40	slow growing soil microbacteria	50,000.00	336	1	10	5,000.00
Tong et al. [164]	Fullerenes	HONEC	soil microbial community	1,000,000.00	720	1	1	1,000,000.00
De La Torre- Roche [158]	Fullerenes	HONEC	Solanum lycopersicu, tomato	5,000,000.00	672	1	1	5,000,000.00
De La Torre- Roche [158]	Fullerenes	LOEC	Zea may, maize	500,000.00	672	1	2	250,000.00

Table S2: Data for soil toxicity for nano-Ag, nano-TiO₂, nano-ZnO, CNT and Fullerenes.

Schlich [165]	Nano-Ag	NOEC	Eisenia fetida, earthworm	60,000.00	1344	1	1	60,000.00
Shoults-Wilson et al. [166]	Nano-Ag	NOEC	Eisenia fetida, earthworm	79,450.00	672	1	1	79,450.00
Shoults-Wilson et al. [166]	Nano-Ag	NOEC	Eisenia fetida, earthworm	84,150.00	672	1	1	84,150.00
Gomes, et.al. [167]	Nano-Ag	NOEC	Enchytraeus albidus, Oligochaete	100,000.00	1008	1	1	100,000.00
Lee [168]	Nano-Ag	NOEC	Phaseolus radiatus	100,000.00	120	10	1	10,000.00
Lee [168]	Nano-Ag	NOEC	Sorghum bicolor	2,000,000.00	120	10	1	200,000.00
Heckmann [169]	Nano-TiO2	EC50	Eisenia fetida, earthworm	1,000,000.00	672	1	10	100,000.00
Hu, et.al. [170]	Nano-TiO2	LOEC	Eisenia fetida, earthworm	5,000,000.00	168	10	2	250,000.00
Canas, et.al. [171]	Nano-TiO2	HONEC	Eisenia fetida, earthworm	10,000,000.00	336	10	1	1,000,000.00
Nogueira, et.al. [172]	Nano-TiO2	LOEC	soil microbial community	5,000,000.00	720	1	2	2,500,000.00
Hu, et.al. [170]	Nano-ZnO	LOEC	Eisenia fetida, earthworm	1,000,000.00	168	10	2	50,000.00
Heggelund [173]	Nano-ZnO	EC50	Eisenia fetida, earthworm	901,000.00	672	1	10	90,100.00
Heggelund [173]	Nano-ZnO	EC50	Eisenia fetida, earthworm	918,600.00	672	1	10	91,860.00
Heggelund [173]	Nano-ZnO	EC50	Eisenia fetida, earthworm	2,874,000.00	672	1	10	287,400.00
Canas, et.al. [171]	Nano-ZnO	HONEC	Eisenia fetida, earthworm	10,000,000.00	336	10	1	1,000,000.00
Hooper et al. [174]	Nano-ZnO	EC50	Eisenia veneta, earthworm	750,000.00	504	10	10	7,500.00
Waalewijn- Kool [175]	Nano-ZnO	EC50	Folsomia candida, springtail	553,000.00	672	1	10	55,300.00
Waalewijn- Kool [176]	Nano-ZnO	EC50	Folsomia candida, springtail	749,000.00	2160	1	10	74,900.00
Waalewijn- Kool [176]	Nano-ZnO	EC50	Folsomia candida, springtail	873,000.00	672	1	10	87,300.00
Waalewijn- Kool [175]	Nano-ZnO	EC50	Folsomia candida, springtail	1,481,000.00	672	1	10	148,100.00
Waalewijn- Kool [176]	Nano-ZnO	EC50	Folsomia candida, springtail	1,817,000.00	8760	1	10	181,700.00

Nano-ZnO					-	10	196,400.00
	EC50	Folsomia candida, springtail	2,847,000.00	2160	1	10	284,700.00
Nano-ZnO	EC50	Folsomia candida, springtail	3,233,000.00	672	1	10	323,300.00
Nano-ZnO	EC50	Folsomia candida, springtail	5,855,000.00	8760	1	10	585,500.00
Nano-ZnO	EC10	Folsomia candida, springtail	1,678,000.00	672	1	2	839,000.00
Nano-ZnO	EC25	Lepidium sativum (garden cress)	286,000.00	72	10	10	2,860.00
Nano-ZnO	EC50	Porcellionides pruinosus	119,000.00	336	10	10	1,190.00
Nano-ZnO	EC50	soil bacteria	5,184,000.00	5	10	10	51,840.00
Nano-ZnO	EC50	soil bacteria	12,025,000.00	5	10	10	120,250.00
	Nano-ZnO Nano-ZnO Nano-ZnO Nano-ZnO Nano-ZnO Nano-ZnO Nano-ZnO Nano-ZnO Nano-ZnO	Nano-ZnOEC50Nano-ZnOEC50Nano-ZnOEC10Nano-ZnOEC25Nano-ZnOEC50Nano-ZnOEC50Nano-ZnOEC50	Nano-ZnOEC50Folsomia candida, springtailNano-ZnOEC50Folsomia candida, springtailNano-ZnOEC10Folsomia candida, springtailNano-ZnOEC25Lepidium sativum (garden cress)Nano-ZnOEC50Porcellionides pruinosusNano-ZnOEC50soil bacteriaNano-ZnOEC50soil bacteria	Nano-ZnOEC50Folsomia candida, springtail3,233,000.00Nano-ZnOEC50Folsomia candida, springtail5,855,000.00Nano-ZnOEC10Folsomia candida, springtail1,678,000.00Nano-ZnOEC25Lepidium sativum (garden cress)286,000.00Nano-ZnOEC50Porcellionides pruinosus119,000.00Nano-ZnOEC50soil bacteria5,184,000.00Nano-ZnOEC50soil bacteria12,025,000.00	Image: Nano-ZnO EC50 Folsomia candida, springtail 3,233,000.00 672 Nano-ZnO EC50 Folsomia candida, springtail 5,855,000.00 8760 Nano-ZnO EC10 Folsomia candida, springtail 1,678,000.00 672 Nano-ZnO EC10 Folsomia candida, springtail 1,678,000.00 672 Nano-ZnO EC25 Lepidium sativum (garden cress) 286,000.00 72 Nano-ZnO EC50 Porcellionides pruinosus 119,000.00 336 Nano-ZnO EC50 soil bacteria 5,184,000.00 5 Nano-ZnO EC50 soil bacteria 12,025,000.00 5	Nano-ZnO EC50 Folsomia candida, springtail 3,233,000.00 672 1 Nano-ZnO EC50 Folsomia candida, springtail 3,233,000.00 8760 1 Nano-ZnO EC50 Folsomia candida, springtail 5,855,000.00 8760 1 Nano-ZnO EC10 Folsomia candida, springtail 1,678,000.00 672 1 Nano-ZnO EC25 Lepidium sativum (garden cess) 286,000.00 72 10 Nano-ZnO EC50 Porcellionides pruinosus 119,000.00 336 10 Nano-ZnO EC50 soil bacteria 5,184,000.00 5 10 Nano-ZnO EC50 soil bacteria 12,025,000.00 5 10	Nano-ZnO EC50 Folsomia candida, springtail 3,233,000.00 672 1 10 Nano-ZnO EC50 Folsomia candida, springtail 5,855,000.00 8760 1 10 Nano-ZnO EC50 Folsomia candida, springtail 5,855,000.00 8760 1 10 Nano-ZnO EC10 Folsomia candida, springtail 1,678,000.00 672 1 2 Nano-ZnO EC10 Folsomia candida, springtail 1,678,000.00 672 1 2 Nano-ZnO EC25 Lepidium sativum (garden cress) 286,000.00 72 10 10 Nano-ZnO EC50 Porcellionides pruinosus 119,000.00 336 10 10 Nano-ZnO EC50 soil bacteria 5,184,000.00 5 10 10 Nano-ZnO EC50 soil bacteria 12,025,000.00 5 10 10

Author	ENM	Dose descriptor	Test organism	Concentration (µg/kg)	Exposure time (h)	AF time	AF no- effect	Species sensitivity (µg/kg)
Petersen, et.al. [181]	CNT	HONEC	Lumbriculus variegatus, earthworm	30,000.00	672	1	1	30,000.00
Petersen, et.al. [181]	CNT	HONEC	Lumbriculus variegatus	370,000.00	672	1	1	370,000.00
Kennedy et al. [5]	CNT	LC50	Hyalella azteca, amphipod	264,000,000.00	240	10	10	2,640,000.00
Kennedy et al. [182]	CNT	HONEC	Hyalella azteca, amphipod	99,000,000.00	240	10	1	9,900,000.00
Pakarinen [183]	Fullerenes	HONEC	Lumbriculus variegatus	50,000.00	672	1	1	50,000.00
Musee, et. Al. [184]	Nano-TiO2	HONEC	Physa acuta, snail	500,000.00	672	1	1	500,000.00

Table S3: Data for sediment toxicity for nano-Ag, nano-Ti O_2 , nano-ZnO, CNT and Fullerenes.

References

- 1. Mouchet, F., et al., Assessment of the potential in vivo ecotoxicity of double-walled carbon nanotubes (DWNTs) in water, using the amphibian Amystoma mexicanum. Nanotoxicology, 2007. **1**(2): p. 149-156.
- 2. Templeton, R.C., et al., *Life-cycle effects of single-walled carbon nanotubes (SWNTs) on an estuarine meiobenthic copepod.* Environ. Sci. Technol., 2006. **40**: p. 7387-7393.
- 3. Li, M. and C.P. Huang, *The responses of Ceriodaphnia dubia toward multi-walled carbon nanotubes: Effect of physical-chemical treatment.* Carbon, 2011. **49**(5): p. 1672-1679.
- 4. Alloy, M.M. and A.P. Roberts, *Effects of suspended multi-walled carbon nanotubes on daphnid growth and reproduction.* Ecotoxicol Environ Saf, 2011. **74**(7): p. 1839-43.
- 5. Kennedy, A.J., et al., *Factors influencing the partitioning and toxicity of nanotubes in the aquatic environment.* Environmental Toxicology and Chemistry, 2008. **27**(9): p. 1932-1941.
- 6. Long, Z.F., et al., *Systematic and Quantitative Investigation of the Mechanism of Carbon Nanotubes' Toxicity toward Algae.* Environmental Science & Technology, 2012. **46**(15): p. 8458-8466.
- 7. Schwab, F., et al., *Are carbon nanotube effects on green algae caused by shading and agglomeration?*. Environ. Sci. Technol., 2011. **45**: p. 6136–6144.
- 8. Asharani, P.V., et al., *Impact of Multi-Walled Carbon Nanotubes on Aquatic Species.* Journal of Nanoscience and Nanotechnology, 2008. **8**(7): p. 3603-3609.
- 9. Cheng, J., E. Flahaut, and S.H. Cheng, *Effect of carbon nanotubes on developing zebrafish (Danio rerio) embryos.* Environ Toxicol Chem, 2007. **26**(4): p. 708-16.
- 10. Zhu, X.S., et al., *Acute toxicities of six manufactured nanomaterial suspensions to Daphnia magna.* Journal of Nanoparticle Research, 2009. **11**(1): p. 67-75.
- 11. Edgington, A.J., et al., *The influence of natural organic matter on the toxicity of multiwalled carbon nanotubes.* Environ Toxicol Chem, 2010. **29**(11): p. 2511-8.
- 12. Roberts, A.P., et al., *In vivo biomodification of lipid-coated carbon nanotubes by Daphnia magna*. Environ. Sci. Technol., 2007. **41**: p. 3025-3029.
- 13. Bayat, N., et al., *The effects of engineered nanoparticles on the cellular structure and growth of Saccharomyces cerevisiae.* Nanotoxicology, 2014. **8**(4): p. 363-73.
- 14. Zhu, Y., et al., *The Interaction and Toxicity of Multi-Walled Carbon Nanotubes with <I>Stylonychia Mytilus</I>*. Journal of Nanoscience and Nanotechnology, 2006. **6**(5): p. 1357-1364.
- 15. Ghafari, P., et al., Impact of carbon nanotubes on the ingestion and digestion of bacteria by ciliated protozoa. Nat Nanotechnol, 2008. **3**(6): p. 347-51.
- 16. Mouchet, F., et al., *Characterisation and in vivo ecotoxicity evaluation of double-wall carbon nanotubes in larvae of the amphibian Xenopus laevis.* Aquat Toxicol, 2008. **87**(2): p. 127-37.
- 17. Mouchet, F., et al., *Carbon nanotube ecotoxicity in amphibians: assessment of multiwalled carbon nanotubes and comparison with double-walled carbon nanotubes.* Nanomedicine (Lond), 2010. **5**(6): p. 963-74.
- 18. Fang, J., et al., *Effect of a fullerene water suspension on bacterial phospholipids and membrane phase behavior.* Environ. Sci. Technol., 2007. **41**: p. 2636-2642.
- 19. Zhu, X.S., et al., Oxidative stress and growth inhibition in the freshwater fish Carassius auratus induced by chronic exposure to sublethal fullerene aggregates. Environmental Toxicology and Chemistry, 2008. **27**(9): p. 1979-1985.
- 20. Luo, J., *Toxicity and Bioaccumulation of Nanomaterial in Aquatic Species*. Journal of the U.S. SJWP, 2007. **2**.
- 21. Isaacson, C.W., et al., *Quantification of fullerenes by LC/ESI-MS and its application to in vivo toxicity assays.* Analytical Chemistry, 2007. **79**(23): p. 9091-9097.
- 22. Usenko, C.Y., S.L. Harper, and R.L. Tanguay, *Fullerene C60 exposure elicits an oxidative stress response in embryonic zebrafish.* Toxicol Appl Pharmacol, 2008. **229**(1): p. 44-55.
- 23. Seda, B.C., et al., *Toxicity of aqueous C70-gallic acid suspension in Daphnia magna*. Environ Toxicol Chem, 2012. **31**(1): p. 215-20.
- 24. Tao, X., et al., *Effects of aqueous stable fullerene nanocrystals (nC60) on Daphnia magna: evaluation of sub-lethal reproductive responses and accumulation.* Chemosphere, 2009. **77**(11): p. 1482-7.
- 25. Lovern, S.B. and R. Klaper, *Daphnia magna mortality when exposed to titanium dioxide and fullerene (C*₆₀) *nanoparticles.* Environ. Toxicol. Chem., 2006. **25**(4): p. 1132-1137.
- 26. Zhu, S., E. Oberdorster, and M.L. Haasch, *Toxicity of an engineered nanoparticle (fullerene, C60) in two aquatic species, Daphnia and fathead minnow.* Mar Environ Res, 2006. **62 Suppl**: p. S5-9.

- 27. Zhu, X., et al., *Acute toxicities of six manufactured nanomaterial suspensions to Daphnia magna.* Journal of Nanoparticle Research, 2008. **11**(1): p. 67-75.
- 28. Oberdörster, E., et al., *Ecotoxicology of carbon-based engineered nanoparticles: Effects of fullerene (C*₆₀) on aquatic organisms. Carbon, 2006. **44**: p. 1112-1120.
- 29. Ivask, A., et al., Profiling of the reactive oxygen species-related ecotoxicity of CuO, ZnO, TiO2, silver and fullerene nanoparticles using a set of recombinant luminescent Escherichia coli strains: differentiating the impact of particles and solubilised metals. Anal Bioanal Chem, 2010. **398**(2): p. 701-16.
- 30. Oberdörster, E., *Manufactured nanomaterials (Fullerenes, C*₆₀) *induce oxidative stress in the brain of juvenile largemouth bass.* Environ. Health Perspect., 2004. **112**(10): p. 1058-1062.
- 31. Gao, J., et al., *Effects of engineered nanomaterials on microbial catalyzed biogeochemical processes in sediments.* J Hazard Mater, 2011. **186**(1): p. 940-5.
- 32. Luo, Z., et al., Gold and silver nanoparticle effects on ammonia-oxidizing bacteria cultures under ammoxidation. Chemosphere, 2014.
- 33. Jin, X., et al., *High-Throughput Screening of Silver Nanoparticle Stability and Bacterial Inactivation in Aquatic Media: Influence of Specific Ions.* Environmental Science & Technology, 2010. **44**(19): p. 7321-7328.
- 34. Yoon, K.Y., et al., *Susceptibility constants of Escherichia coli and Bacillus subtilis to silver and copper nanoparticles*. Sci Total Environ, 2007. **373**(2-3): p. 572-5.
- 35. Roh, J.Y., et al., *Ecotoxicity of Silver Nanoparticles on the Soil Nematode Caenorhabditis elegans Using Functional Ecotoxicogenomics.* Environmental Science & Technology, 2009. **43**(10): p. 3933-3940.
- 36. Kim, S.W., S.H. Nam, and Y.J. An, *Interaction of silver nanoparticles with biological surfaces of Caenorhabditis elegans.* Ecotoxicol Environ Saf, 2012. **77**: p. 64-70.
- 37. Meyer, J.N., et al., *Intracellular uptake and associated toxicity of silver nanoparticles in Caenorhabditis elegans.* Aquatic Toxicology, 2010. **100**(2): p. 140-150.
- 38. Angel, B.M., et al., *The impact of size on the fate and toxicity of nanoparticulate silver in aquatic systems.* Chemosphere, 2013. **93**(2): p. 359-65.
- 39. Gao, J., et al., *Dispersion and toxicity of selected manufactured nanomaterials in natural river water samples: Effects of water chemical composition.* Environ. Sci. Technol., 2009. **43**: p. 3322-3328.
- 40. Kennedy, A.J., et al., *Impact of Organic Carbon on the Stability and Toxicity of Fresh and Stored Silver Nanoparticles*. Environmental Science & Technology, 2012. **46**(19): p. 10772-10780.
- 41. Griffitt, R.J., et al., *Effects of particle composition and species on toxicity of metallic nanomaterials in aquatic organisms.* Environmental Toxicology and Chemistry, 2008. **27**(9): p. 1972-1978.
- 42. McLaughlin, J. and J.C.J. Bonzongo, *Effects of natural water chemistry on nanosilver behavior and toxicity to Ceriodaphnia dubia and Pseudokirchneriella subcapitata*. Environmental Toxicology and Chemistry, 2012. **31**(1): p. 168-175.
- 43. Nair, P.M., S.Y. Park, and J. Choi, *Evaluation of the effect of silver nanoparticles and silver ions using stress responsive gene expression in Chironomus riparius.* Chemosphere, 2013. **92**(5): p. 592-9.
- 44. Navarro, E., et al., *Toxicity of Silver Nanoparticles to Chlamydomonas reinhardtii*. Environ. Sci. Technol., 2008. **42**(23): p. 8959-8964.
- 45. Wang, Z., et al., *Aquatic toxicity of nanosilver colloids to different trophic organisms: contributions of particles and free silver ion.* Environ Toxicol Chem, 2012. **31**(10): p. 2408-13.
- 46. Massarsky, A., et al., *Assessment of nanosilver toxicity during zebrafish (Danio rerio) development.* Chemosphere, 2013. **92**(1): p. 59-66.
- 47. Kaewamatawong, T., Ponpornpisit, A., et.al., *Toxicity Test of Nanosilver Particles on Zebrafish (Danio rerio) Embryonic Development.* Thai J Vet Med., 2012. **42**(3): p. 305-310.
- 48. Cunningham, S., et al., *Effect of nanoparticle stabilization and physicochemical properties on exposure outcome: acute toxicity of silver nanoparticle preparations in zebrafish (Danio rerio).* Environ Sci Technol, 2013. **47**(8): p. 3883-92.
- 49. Bilberg, K., et al., *In Vivo Toxicity of Silver Nanoparticles and Silver Ions in Zebrafish (Danio rerio).* J Toxicol, 2012. **2012**: p. 293784.
- 50. Muth-Kohne, E., et al., *The toxicity of silver nanoparticles to zebrafish embryos increases through sewage treatment processes.* Ecotoxicology, 2013. **22**(8): p. 1264-77.
- 51. van Aerle, R., et al., *Molecular mechanisms of toxicity of silver nanoparticles in zebrafish embryos.* Environ Sci Technol, 2013. **47**(14): p. 8005-14.
- 52. Asharani, P.V., et al., *Toxicity of silver nanoparticles in zebrafish models*. Nanotechnology, 2008. **19**(25): p. 255102.
- 53. Choi, J.E., et al., *Induction of oxidative stress and apoptosis by silver nanoparticles in the liver of adult zebrafish.* Aquat Toxicol, 2010. **100**(2): p. 151-9.

- 54. Volker, C., et al., *Comparative toxicity assessment of nanosilver on three Daphnia species in acute, chronic and multigeneration experiments.* PLoS One, 2013. **8**(10): p. e75026.
- 55. Lee, Y.J., et al., *Ion-release kinetics and ecotoxicity effects of silver nanoparticles*. Environmental Toxicology and Chemistry, 2012. **31**(1): p. 155-159.
- 56. Kim, J., S. Kim, and S. Lee, *Differentiation of the toxicities of silver nanoparticles and silver ions to the Japanese medaka* (*Oryzias latipes*) and the cladoceran Daphnia magna. Nanotoxicology, 2011. **5**(2): p. 208-214.
- 57. Zhao, C.M. and W.X. Wang, Importance of surface coatings and soluble silver in silver nanoparticles toxicity to Daphnia magna. Nanotoxicology, 2012. **6**(4): p. 361-70.
- 58. Allen, H.J., et al., *Effects from filtration, capping agents, and presence/absence of food on the toxicity of silver nanoparticles to Daphnia magna.* Environ Toxicol Chem, 2010. **29**(12): p. 2742-50.
- 59. Georgantzopoulou, A., et al., *Ag nanoparticles: size- and surface-dependent effects on model aquatic organisms and uptake evaluation with NanoSIMS.* Nanotoxicology, 2013. **7**: p. 1168-78.
- 60. Poynton, H.C., et al., *Toxicogenomic Responses of Nanotoxicity in Daphnia magna Exposed to Silver Nitrate and Coated Silver Nanoparticles.* Environmental Science & Technology, 2012. **46**(11): p. 6288-6296.
- 61. Kennedy, A.J., et al., *Fractionating Nanosilver: Importance for Determining Toxicity to Aquatic Test Organisms.* Environmental Science & Technology, 2010. **44**(24): p. 9571-9577.
- 62. Asghari, S., et al., *Toxicity of various silver nanoparticles compared to silver ions in Daphnia magna.* J Nanobiotechnology, 2012. **10**: p. 14.
- 63. Newton, K.M., et al., *Silver nanoparticle toxicity to Daphnia magna is a function of dissolved silver concentration.* Environmental Toxicology and Chemistry, 2013. **32**(10): p. 2356-2364.
- 64. Das, P., M.A. Xenopoulos, and C.D. Metcalfe, *Toxicity of silver and titanium dioxide nanoparticle suspensions to the aquatic invertebrate, Daphnia magna*. Bull Environ Contam Toxicol, 2013. **91**(1): p. 76-82.
- 65. Li, T., et al., *Comparative toxicity study of Ag, Au, and Ag-Au bimetallic nanoparticles on Daphnia magna.* Analytical and Bioanalytical Chemistry, 2010. **398**(2): p. 689-700.
- 66. Jo, H.J., et al., *Acute toxicity of Ag and CuO nanoparticle suspensions against Daphnia magna: the importance of their dissolved fraction varying with preparation methods.* J Hazard Mater, 2012. **227-228**: p. 301-8.
- 67. Hoheisel, S.M., S. Diamond, and D. Mount, *Comparison of nanosilver and ionic silver toxicity in Daphnia magna and Pimephales promelas.* Environmental Toxicology and Chemistry, 2012. **31**(11): p. 2557-2563.
- 68. Stensberg, M.C., et al., *Silver nanoparticle-specific mitotoxicity in Daphnia magna*. Nanotoxicology, 2014. 8: p. 833-42.
- 69. Zhao, C.M. and W.X. Wang, *Comparison of acute and chronic toxicity of silver nanoparticles and silver nitrate to Daphnia magna.* Environ Toxicol Chem, 2011. **30**(4): p. 885-92.
- 70. Pokhrel, L.R., B. Dubey, and P.R. Scheuerman, *Impacts of select organic ligands on the colloidal stability, dissolution dynamics, and toxicity of silver nanoparticles.* Environ Sci Technol, 2013. **47**(22): p. 12877-85.
- 71. Blinova, I., et al., *Toxicity of two types of silver nanoparticles to aquatic crustaceans Daphnia magna and Thamnocephalus platyurus.* Environ Sci Pollut Res Int, 2013. **20**(5): p. 3456-63.
- 72. Martínez-Castañón, G.A., et al., *Synthesis and antibacterial activity of silver nanoparticles with different sizes.* Journal of Nanoparticle Research, 2008. **10**(8): p. 1343-1348.
- 73. Pokhrel, L.R., et al., *Rapid screening of aquatic toxicity of several metal-based nanoparticles using the MetPLATE bioassay.* Sci Total Environ, 2012. **426**: p. 414-22.
- 74. Arce Funck, J., et al., *Behavioural and physiological responses of Gammarus fossarum (Crustacea Amphipoda) exposed to silver.* Aquat Toxicol, 2013. **142-143**: p. 73-84.
- 75. Gubbins, E.J., L.C. Batty, and J.R. Lead, *Phytotoxicity of silver nanoparticles to Lemna minor L.* Environ Pollut, 2011. **159**(6): p. 1551-9.
- 76. Kim, E., et al., *Growth inhibition of aquatic plant caused by silver and titanium oxide nanoparticles.* Toxicology and Environmental Health Sciences, 2011. **3**(1): p. 1-6.
- 77. Ali, D., et al., *Sensitivity of freshwater pulmonate snail Lymnaea luteola L., to silver nanoparticles.* Chemosphere, 2014. **104**: p. 134-40.
- 78. Miao, A.J., et al., Intracellular Uptake: A Possible Mechanism for Silver Engineered Nanoparticle Toxicity to a Freshwater Alga Ochromonas danica. Plos One, 2010. **5**(12).
- 79. Govindasamy, R. and A.A. Rahuman, *Histopathological studies and oxidative stress of synthesized silver nanoparticles in Mozambique tilapia (Oreochromis mossambicus).* Journal of Environmental Sciences, 2012. **24**(6): p. 1091-1098.
- 80. Chae, Y.J., et al., *Evaluation of the toxic impact of silver nanoparticles on Japanese medaka (Oryzias latipes)*. Aquat Toxicol, 2009. **94**(4): p. 320-7.
- 81. Wu, Y., et al., *Effects of silver nanoparticles on the development and histopathology biomarkers of Japanese medaka (Oryzias latipes) using the partial-life test.* Aquat Toxicol, 2010. **100**(2): p. 160-7.

- 82. Kashiwada, S., et al., *Silver nanocolloids disrupt medaka embryogenesis through vital gene expressions.* Environ Sci Technol, 2012. **46**(11): p. 6278-87.
- 83. Kim, J.Y., et al., *Developmental toxicity of Japanese medaka embryos by silver nanoparticles and released ions in the presence of humic acid.* Ecotoxicol Environ Saf, 2013. **92**: p. 57-63.
- 84. Kvitek, L., et al., *Initial Study on the Toxicity of Silver Nanoparticles (NPs) against Paramecium caudatum.* Journal of Physical Chemistry C, 2009. **113**(11): p. 4296-4300.
- 85. Bilberg, K., et al., *Silver nanoparticles and silver nitrate cause respiratory stress in Eurasian perch (Perca fluviatilis).* Aquat Toxicol, 2010. **96**(2): p. 159-65.
- 86. Laban, G., et al., *The effects of silver nanoparticles on fathead minnow (Pimephales promelas) embryos.* Ecotoxicology, 2010. **19**(1): p. 185-195.
- 87. Debabrata D., G.A., *Cellular responses of Saccharomyces cerevisiae to silver nanoparticles*. Res J Biotech, 2013. **8**(1): p. 11.
- 88. Niazi, J.H., et al., *Global gene response in Saccharomyces cerevisiae exposed to silver nanoparticles.* Appl Biochem Biotechnol, 2011. **164**(8): p. 1278-91.
- 89. Jiang, H.S., et al., *Physiological analysis of silver nanoparticles and AgNO3 toxicity to Spirodela polyrhiza.* Environ Toxicol Chem, 2012. **31**(8): p. 1880-6.
- 90. Burchardt, A.D., et al., *Effects of silver nanoparticles in diatom Thalassiosira pseudonana and cyanobacterium Synechococcus sp.* Environ Sci Technol, 2012. **46**(20): p. 11336-44.
- 91. Juganson, K., et al., *Extracellular conversion of silver ions into silver nanoparticles by protozoan Tetrahymena thermophila.* Environmental Science: Processes & Impacts, 2013. **15**(1): p. 244-250.
- 92. Cherchi, C., et al., *Impact of nano titanium dioxide exposure on cellular structure of Anabaena variabilis and evidence of internalization.* Environ Toxicol Chem, 2011. **30**(4): p. 861-9.
- 93. Adams, L.K., D.Y. Lyon, and P.J. Alvarez, *Comparative eco-toxicity of nanoscale TiO2, SiO2, and ZnO water suspensions.* Water Res, 2006. **40**(19): p. 3527-32.
- 94. Clement, L., C. Hurel, and N. Marmier, *Toxicity of TiO(2) nanoparticles to cladocerans, algae, rotifers and plants effects of size and crystalline structure.* Chemosphere, 2013. **90**(3): p. 1083-90.
- 95. Wu, Q., et al., *Comparison of toxicities from three metal oxide nanoparticles at environmental relevant concentrations in nematode Caenorhabditis elegans.* Chemosphere, 2013. **90**(3): p. 1123-31.
- 96. Wang, H., R.L. Wick, and B. Xing, *Toxicity of nanoparticulate and bulk ZnO, Al2O3 and TiO2 to the nematode Caenorhabditis elegans.* Environ Pollut, 2009. **157**(4): p. 1171-7.
- 97. Hall, S., et al., Acute and chronic toxicity of nano-scale TiO2particles to freshwater fish, cladocerans, and green algae, and effects of organic and inorganic substrate on TiO2toxicity. Nanotoxicology, 2009. **3**(2): p. 91-97.
- 98. Wang, D., et al., *Synergistic toxic effect of nano-TiO and As(V) on Ceriodaphnia dubia.* Sci Total Environ, 2011. **409**(7): p. 1351-6.
- 99. Li, S., et al., *Species sensitivity and dependence on exposure conditions impacting the phototoxicity of TiO(2) nanoparticles to benthic organisms.* Environ Toxicol Chem, 2014. **33**(7): p. 1563-9.
- 100. Wang, J., et al., *Toxicity assessment of manufactured nanomaterials using the unicellular green alga Chlamydomonas reinhardtii.* Chemosphere, 2008. **73**(7): p. 1121-8.
- 101. Gunawan, C., et al., Submicron and nano formulations of titanium dioxide and zinc oxide stimulate unique cellular toxicological responses in the green microalga Chlamydomonas reinhardtii. J Hazard Mater, 2013. **260**: p. 984-92.
- 102. Sadiq, I.M., et al., *Ecotoxicity study of titania (TiO(2)) NPs on two microalgae species: Scenedesmus sp. and Chlorella sp.* Ecotoxicol Environ Saf, 2011. **74**(5): p. 1180-7.
- 103. Ji, J., Z.F. Long, and D.H. Lin, *Toxicity of oxide nanoparticles to the green algae Chlorella sp.* Chemical Engineering Journal, 2011. **170**(2-3): p. 525-530.
- 104. Chen, J., et al., *Effects of titanium dioxide nano-particles on growth and some histological parameters of zebrafish (Danio rerio) after a long-term exposure.* Aquat Toxicol, 2011. **101**(3-4): p. 493-9.
- 105. Xiong, D., et al., *Effects of nano-scale TiO2, ZnO and their bulk counterparts on zebrafish: acute toxicity, oxidative stress and oxidative damage.* Sci Total Environ, 2011. **409**(8): p. 1444-52.
- 106. Yang, S.P., et al., *Influence of humic acid on titanium dioxide nanoparticle toxicity to developing zebrafish*. Environ Sci Technol, 2013. **47**(9): p. 4718-25.
- 107. Bar-llan, O., et al., *Titanium dioxide nanoparticles produce phototoxicity in the developing zebrafish*. Nanotoxicology, 2012. **6**(6): p. 670-9.
- 108. Zhu, X., et al., *Comparative toxicity of several metal oxide nanoparticle aqueous suspensions to Zebrafish (Danio rerio) early developmental stage.* J Environ Sci Health A Tox Hazard Subst Environ Eng, 2008. **43**(3): p. 278-84.
- 109. Ma, H., A. Brennan, and S.A. Diamond, *Phototoxicity of TiO2 nanoparticles under solar radiation to two aquatic species: Daphnia magna and Japanese medaka.* Environmental Toxicology Chemistry, 2012. **31**(7): p. 1621-1629.

- 110. Dabrunz, A., et al., *Biological Surface Coating and Molting Inhibition as Mechanisms of TiO(2) Nanoparticle Toxicity in Daphnia magna.* Plos One, 2011. **6**(5).
- 111. Zhu, X., Y. Chang, and Y. Chen, *Toxicity and bioaccumulation of TiO2 nanoparticle aggregates in Daphnia magna*. Chemosphere, 2010. **78**(3): p. 209-15.
- 112. Warheit, D.B., et al., *Development of a base set of toxicity tests using ultrafine TiO2 particles as a component of nanoparticle risk management.* Toxicol Lett, 2007. **171**(3): p. 99-110.
- 113. Kim, K.T., et al., *Oxidative stress responses of Daphnia magna exposed to TiO2 nanoparticles according to size fraction.* Science of the Total Environment, 2010. **408**(10): p. 2268-2272.
- 114. Jacobasch, C., et al., *Long-term effects of nanoscaled titanium dioxide on the cladoceran Daphnia magna over six generations.* Environ Pollut, 2013. **186C**: p. 180-186.
- 115. Amiano, I., et al., *Acute toxicity of nanosized TiO(2) to Daphnia magna under UVA irradiation.* Environ Toxicol Chem, 2012. **31**(11): p. 2564-6.
- 116. Wiench, K., et al., *Acute and chronic effects of nano- and non-nano-scale TiO(2) and ZnO particles on mobility and reproduction of the freshwater invertebrate Daphnia magna.* Chemosphere, 2009. **76**(10): p. 1356-65.
- 117. Heinlaan, M., et al., *Toxicity of nanosized and bulk ZnO, CuO and TiO*₂ to bacteria Vibrio fischeri and crustaceans Daphnia magna and Thamnocephalus platyurus. Chemosphere, 2008. **71**(7): p. 1308-1316.
- 118. Marcone, G.P.S., et al., *Ecotoxicity of TiO2 to Daphnia similis under irradiation*. Journal of Hazardous Materials, 2012. **211**: p. 436-442.
- 119. Hund-Rinke, K. and M. Simon, *Ecotoxic effect of photocatalytic active nanoparticles TiO*₂ *on algae and daphnids.* Environ. Sci. Pollution Res., 2006. **13**(4): p. 225-232.
- 120. Bigorgne, E., et al., *Ecotoxicological assessment of TiO2 byproducts on the earthworm Eisenia fetida*. Environ Pollut, 2011. **159**(10): p. 2698-705.
- 121. Dasari, T.P., K. Pathakoti, and H.-M. Hwang, *Determination of the mechanism of photoinduced toxicity of selected metal oxide nanoparticles (ZnO, CuO, Co3O4 and TiO2) to E. coli bacteria.* Journal of Environmental Sciences, 2013. **25**(5): p. 882-888.
- 122. Hu, X., et al., *In vitro evaluation of cytotoxicity of engineered metal oxide nanoparticles.* Sci Total Environ, 2009. **407**(8): p. 3070-2.
- 123. Bundschuh, M., et al., *Effects of nano-TiO(2) in combination with ambient UV-irradiation on a leaf shredding amphipod.* Chemosphere, 2011. **85**(10): p. 1563-7.
- 124. Zhu, X., J. Zhou, and Z. Cai, *TiO2 nanoparticles in the marine environment: impact on the toxicity of tributyltin to abalone (Haliotis diversicolor supertexta) embryos.* Environ Sci Technol, 2011. **45**(8): p. 3753-8.
- 125. Li, S., et al., *Phototoxicity of TiO(2) nanoparticles to a freshwater benthic amphipod: are benthic systems at risk?* Sci Total Environ, 2014. **466-467**: p. 800-8.
- 126. Federici, G., B.J. Shaw, and R.D. Handy, *Toxicity of titanium dioxide nanoparticles to rainbow trout (Oncorhynchus mykiss): gill injury, oxidative stress, and other physiological effects.* Aquat Toxicol, 2007. **84**(4): p. 415-30.
- 127. Li, K., et al., *Surface interactions affect the toxicity of engineered metal oxide nanoparticles toward Paramecium.* Chem Res Toxicol, 2012. **25**(8): p. 1675-81.
- 128. Jovanovic, B., et al., *Effects of nanosized titanium dioxide on innate immune system of fathead minnow (Pimephales promelas Rafinesque, 1820).* Ecotoxicology and Environmental Safety, 2011. **74**(4): p. 675-683.
- 129. Kim, S., J. Kim, and I. Lee, *Effects of Zn and ZnO nanoparticles and Zn2+on soil enzyme activity and bioaccumulation of Zn in Cucumis sativus.* Chemistry and Ecology, 2011. **27**(1): p. 49-55.
- 130. Aruoja, V., et al., *Toxicity of nanoparticles of CuO, ZnO and TiO2 to microalgae Pseudokirchneriella subcapitata*. Sci Total Environ, 2009. **407**(4): p. 1461-8.
- 131. Hartmann, N.B., et al., *Algal testing of titanium dioxide nanoparticles-Testing considerations, inhibitory effects and modification of cadmium bioavailability.* Toxicology, 2010. **269**(2-3): p. 190-197.
- 132. Metzler, D.M., et al., *Responses of algae to photocatalytic nano-TiO(2) particles with an emphasis on the effect of particle size*. Chemical Engineering Journal, 2011. **170**(2-3): p. 538-546.
- 133. Kasemets, K., et al., *Toxicity of nanoparticles of ZnO, CuO and TiO2 to yeast Saccharomyces cerevisiae.* Toxicol In Vitro, 2009. **23**(6): p. 1116-22.
- 134. Velzeboer, I., et al., *Aquatic ecotoxicity tests of some nanomaterials*. Environmental Toxicology and Chemistry, 2008. **27**(9): p. 1942-1947.
- 135. Nations, S., et al., Acute effects of Fe(2)O(3), TiO(2), ZnO and CuO nanomaterials on Xenopus laevis. Chemosphere, 2011. **83**(8): p. 1053-61.
- 136. Li, M., et al., *Stability, Bioavailability, and Bacterial Toxicity of ZnO and Iron-Doped ZnO Nanoparticles in Aquatic Media.* Environmental Science & Technology, 2010. **45**(2): p. 755-761.

- 137. Jones, N., et al., *Antibacterial activity of ZnO nanoparticle suspensions on a broad spectrum of microorganisms.* FEMS Microbiol Lett, 2008. **279**(1): p. 71-6.
- 138. Ma, H., Besrtsch, P., Glenn, T. T., Kabengl, N., Williams, P., *Toxicity of manufactured zinc oxide nanoparticles in the nematode Caenorhabditis elegans.* Environmental Toxicology and Chemistry, 2009. **28**(6): p. 1324–1330.
- 139. Ma, H., et al., *Comparative phototoxicity of nanoparticulate and bulk ZnO to a free-living nematode Caenorhabditis elegans: The importance of illumination mode and primary particle size.* Environmental Pollution, 2011. **159**(6): p. 1473-1480.
- 140. Lin, D.H., et al., *The influence of dissolved and surface-bound humic acid on the toxicity of TiO2 nanoparticles to Chlorella sp.* Water Research, 2012. **46**(14): p. 4477-4487.
- 141. Fabrega, J., et al., *Sequestration of zinc from zinc oxide nanoparticles and life cycle effects in the sediment dweller amphipod Corophium volutator.* Environ Sci Technol, 2012. **46**(2): p. 1128-35.
- 142. Yu, L.P., et al., *Comparative toxicity of nano-ZnO and bulk ZnO suspensions to zebrafish and the effects of sedimentation, OH production and particle dissolution in distilled water.* J Environ Monit, 2011. **13**(7): p. 1975-82.
- 143. Zhao, H., Lu, G., Jin, S., *Toxicity of Nanoscale CuO and ZnO to Daphnia magna*. CHEM. RES. CHINESE UNIVERSITIES 2012. **28**(2): p. 209–213.
- 144. Lopes, S., et al., *Zinc oxide nanoparticles toxicity to Daphnia magna: size-dependent effects and dissolution*. Environ Toxicol Chem, 2014. **33**(1): p. 190-8.
- 145. Blinova, I., et al., *Ecotoxicity of nanoparticles of CuO and ZnO in natural water*. Environ Pollut, 2010. **158**(1): p. 41-7.
- 146. Naddafi, K., M.R. Zare, and S. Nazmara, *Investigating potential toxicity of phenanthrene adsorbed to nano-ZnO usingDaphnia magna*. Toxicological & Environmental Chemistry, 2011. **93**(4): p. 729-737.
- 147. Poynton, H.C., et al., *Differential Gene Expression in Daphnia magna Suggests Distinct Modes of Action and Bioavailability for ZnO Nanoparticles and Zn Ions.* Environmental Science & Technology, 2011. **45**(2): p. 762-768.
- 148. Zarrindokht, E.-K., *Antibacterial activity of ZnO nanoparticle on Gram-positive and Gram-negative bacteria.* African Journal of Microbiology Research, 2012. **5**(18).
- 149. Poynton, H.C., et al., *Toxicity and transcriptomic analysis in Hyalella azteca suggests increased exposure and susceptibility of epibenthic organisms to zinc oxide nanoparticles.* Environ Sci Technol, 2013. **47**(16): p. 9453-60.
- 150. Miller, R.J., et al., *Impacts of Metal Oxide Nanoparticles on Marine Phytoplankton*. Environmental Science & Technology, 2010. **44**(19): p. 7329-7334.
- 151. Lin, D. and B. Xing, *Phytotoxicity of nanoparticles: Inhibition of seed germination and root growth.* Environ. Pollut., 2007. **150**: p. 243-250.
- 152. Lin, D. and B. Xing, *Root uptake and phytotoxicity of ZnO nanoparticles*. Environ. Sci. Technol., 2008. **42**(15): p. 5580-5585.
- 153. Franklin, N.M., et al., Comparative toxicity of nanoparticulate ZnO, bulk ZnO, and ZnCl₂ to a freshwater microalga (Pseudokirchneriella subcapitata): The importance of particle solubility. Environmental Science & Technology, 2007.
 41(24): p. 8484-8490.
- 154. Lee, W.M. and Y.J. An, *Effects of zinc oxide and titanium dioxide nanoparticles on green algae under visible, UVA, and UVB irradiations: no evidence of enhanced algal toxicity under UV pre-irradiation.* Chemosphere, 2013. **91**(4): p. 536-44.
- 155. Mortimer, M., K. Kasemets, and A. Kahru, *Toxicity of ZnO and CuO nanoparticles to ciliated protozoa Tetrahymena thermophila*. Toxicology, 2010. **269**(2-3): p. 182-9.
- 156. Wong, S.W., et al., *Toxicities of nano zinc oxide to five marine organisms: influences of aggregate size and ion solubility.* Anal Bioanal Chem, 2010. **396**(2): p. 609-18.
- 157. Jarvis, T.A., et al., *Toxicity of ZnO nanoparticles to the copepod Acartia tonsa, exposed through a phytoplankton diet.* Environmental Toxicology and Chemistry, 2013. **32**(6): p. 1264-1269.
- 158. De La Torre-Roche, R., et al., *Multiwalled carbon nanotubes and c60 fullerenes differentially impact the accumulation of weathered pesticides in four agricultural plants.* Environ Sci Technol, 2013. **47**(21): p. 12539-47.
- 159. Scott-Fordsmand, J.J., et al., *The toxicity testing of double-walled nanotubes-contaminated food to Eisenia veneta earthworms.* Ecotoxicol Environ Saf, 2008. **71**(3): p. 616-9.
- 160. Chung, H., et al., *The effect of multi-walled carbon nanotubes on soil microbial activity.* Ecotoxicol Environ Saf, 2011. **74**(4): p. 569-75.
- 161. Shrestha, B., et al., *An evaluation of the impact of multiwalled carbon nanotubes on soil microbial community structure and functioning*. J Hazard Mater, 2013. **261**: p. 188-97.
- 162. Johansen, A., et al., *Effects of C-60 fullerene nanoparticles on soil bacteria and protozoans.* Environmental Toxicology and Chemistry, 2008. **27**(9): p. 1895-1903.
- 163. van der Ploeg, M.J., et al., *Effects of C60 nanoparticle exposure on earthworms (Lumbricus rubellus) and implications for population dynamics.* Environ Pollut, 2011. **159**(1): p. 198-203.
- 164. Tong, Z., et al., *Impact of fullerene (C*₆₀) on a soil microbial community. Environ. Sci. Technol., 2007. **41**: p. 2985-2991.

- 165. Schlich, K., et al., *Effects of silver nanoparticles and silver nitrate in the earthworm reproduction test.* Environ Toxicol Chem, 2013. **32**(1): p. 181-8.
- 166. Shoults-Wilson, W.A., et al., *Role of Particle Size and Soil Type in Toxicity of Silver Nanoparticles to Earthworms.* Soil Science Society of America Journal, 2011. **75**(2): p. 365.
- 167. Gomes, S.I., et al., *Mechanisms of response to silver nanoparticles on Enchytraeus albidus (Oligochaeta): survival, reproduction and gene expression profile.* J Hazard Mater, 2013. **254-255**: p. 336-44.
- 168. Lee, W.M., J.I. Kwak, and Y.J. An, *Effect of silver nanoparticles in crop plants Phaseolus radiatus and Sorghum bicolor: Media effect on phytotoxicity.* Chemosphere, 2012. **86**(5): p. 491-499.
- 169. Heckmann, L.H., et al., *Limit-test toxicity screening of selected inorganic nanoparticles to the earthworm Eisenia fetida*. Ecotoxicology, 2011. **20**(1): p. 226-233.
- 170. Hu, C.W., et al., *Toxicological effects of TiO2 and ZnO nanoparticles in soil on earthworm Eisenia fetida.* Soil Biology & Biochemistry, 2010. **42**(4): p. 586-591.
- 171. Canas, J.E., et al., *Acute and reproductive toxicity of nano-sized metal oxides (ZnO and TiO(2)) to earthworms (Eisenia fetida).* J Environ Monit, 2011. **13**(12): p. 3351-7.
- 172. Nogueira, V., et al., *Impact of organic and inorganic nanomaterials in the soil microbial community structure.* Science of the Total Environment, 2012. **424**: p. 344-350.
- 173. Heggelund, L.R., et al., Soil pH effects on the comparative toxicity of dissolved zinc, non-nano and nano ZnO to the earthworm Eisenia fetida. Nanotoxicology, 2014. **8**(5): p. 559-72.
- 174. Hooper, H.L., et al., *Comparative chronic toxicity of nanoparticulate and ionic zinc to the earthworm Eisenia veneta in a soil matrix*. Environ Int, 2011. **37**(6): p. 1111-7.
- 175. Waalewijn-Kool, P.L., et al., *The effect of pH on the toxicity of zinc oxide nanoparticles to Folsomia candida in amended field soil.* Environ Toxicol Chem, 2013. **32**(10): p. 2349-55.
- 176. Waalewijn-Kool, P.L., et al., *Sorption, dissolution and pH determine the long-term equilibration and toxicity of coated and uncoated ZnO nanoparticles in soil.* Environ Pollut, 2013. **178**: p. 59-64.
- 177. Kool, P.L., M.D. Ortiz, and C.A.M. van Geste, *Chronic toxicity of ZnO nanoparticles, non-nano ZnO and ZnCl2 to Folsomia candida (Collembola) in relation to bioavailability in soil.* Environmental Pollution, 2011. **159**(10): p. 2713-2719.
- 178. Manzo, S., et al., *Investigation of ZnO nanoparticles' ecotoxicological effects towards different soil organisms*. Environmental Science and Pollution Research, 2010.
- 179. Tourinho, P.S., et al., *Influence of soil pH on the toxicity of zinc oxide nanoparticles to the terrestrial isopod Porcellionides pruinosus.* Environ Toxicol Chem, 2013. **32**(12): p. 2808-15.
- 180. Rousk, J., et al., *Comparative toxicity of nanoparticulate CuO and ZnO to soil bacterial communities.* PLoS One, 2012. **7**(3): p. e34197.
- 181. Petersen, E.J., Q. Huang, and W.J. Weber, *Ecological uptake and depuration of carbon nanotubes by Lumbriculus variegatus.* Environ. Health Perspect., 2008. **116**(4): p. 496-500.
- 182. Kennedy, A.J., et al., *INFLUENCE OF NANOTUBE PREPARATION IN AQUATIC BIOASSAYS*. Environmental Toxicology and Chemistry, 2009. **28**(9): p. 1930-1938.
- 183. Pakarinen, K., et al., *Adverse effects of fullerenes (nC(60)) spiked to sediments on Lumbriculus variegatus (Oligochaeta).* Environmental Pollution, 2011. **159**(12): p. 3750-3756.
- 184. Musee, N., et al., *The effects of engineered nanoparticles on survival, reproduction, and behaviour of freshwater snail, Physa acuta (Draparnaud, 1805).* Chemosphere, 2010. **81**(10): p. 1196-1203.