1 SUPPLEMENTARY MATERIAL

2	Two new homoisoflavones from Portulaca oleracea L. and their activities					
3	Yang Duan ^{a,†} , Zheming Ying ^{b,†} , Mingbo Zhang ^a , Xixiang Ying ^{a,*} , Guanlin Yang ^{b,}					
4	*					
5	^a School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian,					
6	P.R. China					
7	^b School of The First Clinic, Liaoning University of Traditional Chinese Medicine,					
8	Shenyang, Liaoning, P.R. China					
9	E-mail address in order:					
10	duanyang39@163.com, yingzheming1994@163.com, <u>mbzhang@126.com</u> ,					
11	yingxixiang@163.com and yang_guanlin@163.com					
12	*Correspondence author: Prof. Xixiang Ying, School of Pharmacy, Liaoning					
13	University of Traditional Chinese Medicine, No. 77, Shengming 1 Road, DD Port,					
14	Dalian, 116600, P.R. China, Tel: +86-0411-85890139, Fax: +86-0411-85890128,					
15	yingxixiang@163.com					
16	*Correspondence author: Prof. Guanlin Yang, School of The First Clinic, Liaoning					
17	University of Traditional Chinese Medicine, Shenyang, Liaoning, 110032, P.R. China,					
18	yang_guanlin@163.com					
19	[†] Yang Duan and Zheming Ying contributed equally to this work.					
20						
21	Abstract					
22	Two new compounds, identified as					
23	3-(2-hydroxybenzyl)-6,8-dimethoxy-4H-chromen-4-one (1), named oleracone J and					
24	3-(2-hydroxybenzyl)-6,8-dimethoxychroman-4-one (2), named oleracone K, were					

25 isolated from *Portulaca oleracea* L., and the structures of them were determined by

spectroscopy, including one- and two-dimensional nuclear magnetic resonance, high-resolution electrospray ionization time-of-flight mass spectrometry. The two compounds have scavenging activities in 1,1-diphenyl-2-picryl-hydrazyl (DPPH) radical quenching assay, with IC₅₀ values of 18.34, 23.92 μ M, and anticholinesterase activities with IC₅₀ values of 59.08, 67.89 μ M, respectively.

31 Keywords: *Portulaca oleracea* L.; homoisoflavone; antioxidant activity;
32 anticholinesterase activity

33

34 Supporting information

- 35 Supplementary material relating to this article is available online, alongside Tables
- 36 S1-S3 and Figure S1-S23.
- Table S1. Full NMR data for oleracone J (1) in CDCl₃
- Table S2. Full NMR data for oleracone K (2) in CDCl₃
- Table S3. IC_{50} (μ M) for antioxidant and acetylcholinesterase activities of compounds

40 **1** and **2** (n = 5)

- 41 Figure S1. Key HMBC correlations of oleracone J (1)
- 42 Figure S2. Key ¹H-¹H COSY and ROESY correlations of oleracone J (1)
- 43 Figure S3. Key HMBC correlations of oleracone K (2)
- 44 Figure S4. Key 1 H- 1 H COSY and ROESY correlations of oleracone K (2)
- 45 Figure S5. ¹H NMR (600 MHz) spectrum of oleracone J (1) in CDCl₃
- 46 Figure S6. ¹³C NMR (150 MHz) spectrum of oleracone J (1) in CDCl₃
- 47 Figure S7. DEPT spectrum of oleracone J (1) in CDCl₃
- 48 Figure S8. HSQC spectrum of oleracone J (1) in CDCl₃
- 49 Figure S9. HMBC spectrum of oleracone J (1) in CDCl₃
- 50 Figure S10. ${}^{1}\text{H}{}^{-1}\text{H}$ COSY spectrum of oleracone J (1) in CDCl₃

- 51 Figure S11. ROESY spectrum of oleracone J (1) in CDCl₃
- 52 Figure S12. UHPLC-ESI-Q-TOF/MS of oleracone J (1)
- 53 Figure S13. ¹H NMR (600 MHz) spectrum of oleracone K (2) in CDCl₃
- 54 Figure S14. ¹³C NMR (150 MHz) spectrum of oleracone K (2) in CDCl₃
- 55 Figure S15. DEPT spectrum of oleracone K (2) in CDCl₃
- 56 Figure S16. HSQC spectrum of oleracone K (2) in CDCl₃
- 57 Figure S17. HMBC spectrum of oleracone K (2) in CDCl₃
- Figure S18. 1 H- 1 H COSY spectrum of oleracone K (2) in CDCl₃
- 59 Figure S19. ROESY spectrum of oleracone K (2) in CDCl₃
- 60 Figure S20. UHPLC-ESI-Q-TOF/MS of oleracone K (2)
- Figure S21. DPPH radical scavenging activities of compounds 1-2 and BHA (n = 5)
- Figure S22. Anticholinesterase effect of compounds 1-2 and Eserine (n = 5)
- Figure S23. Compounds 1-2 binding mode to AChE
- 64
- 65
- 66
- 67
- 68

- 70
- 71
- 72 73
- -

74

Position	δ_{C}	Туре	$\delta_{\rm H}$, mult (J in Hz)	¹ H ⁻¹ H COSY	HMBC	ROESY
1		Ο				
2	151.1	CH	7.87 s	9	3, 4, 8a, 9	9
3	125.5	С				
4	178.7	С				
4a	108.9	С				
5	92.6	CH	6.42 d (2.2)	7	4, 4a, 6, 7, 8a	6-OMe, 7
6	164.8	С				
6-OMe	56.3	CH_3	3.88 s		6	5
7	96.6	CH	6.35 d (2.2)	5, 8-OMe	4a, 5, 6, 8	5, 8-OMe
8	161.3	С				
8-OMe	56.6	CH_3	3.93 s	7	8	7
8a	160.7	С				
9	27.5	CH_2	3.66 s	2, 6'	2, 3, 4, 1', 2', 6'	2, 6'
1′	126.2	С				
2'	155.4	С				
2′-ОН			8.23 brs			
3'	118.7	CH	6.94 dd (8.1, 14.1)	4'	1', 2', 5'	4'
4′	128.6	CH	7.12 m	3', 5', 6'	2', 3', 5', 6'	3', 5', 6'
5'	120.3	CH	6.82 t (7.1)	4', 6'	1', 3', 4', 6'	4', 6'
6'	130.2	CH	7.10 m	9, 4′, 5′	9, 1', 2', 4', 5'	9, 4′, 5′
77						
78						
79						
80						
81						
82						
83						
84						
85						
86						
87						

76	Table S1.	Full NMR	data for	oleracone	J (1)	in CDC	Cl_3
----	-----------	----------	----------	-----------	-------	--------	--------

Position	$\delta_{\rm C}$	Type	$\delta_{\rm H}$, mult (J in Hz)	¹ H ⁻¹ H COSY	HMBC	ROESY
1		0				
2	70.5	CH_2	a: 4.17 t (11.2)	2b, 3, 9a, 9b	3, 4, 8a, 9	2b, 3, 9a, 9b
			b: 4.53 dd (4.9, 11.2)	2a, 3, 9b	3, 4, 8a, 9	2a, 3, 9a, 9b
3	47.8	CH	3.04 m	2a, 2b, 9a, 9b	2, 4, 9, 1'	2a, 2b, 9a, 9b
4	194.1	С				
4a	105.5	С				
5	93.4	CH	6.05 q (2.3, 3.7)	7	4, 4a, 6, 7, 8a	6-OMe, 7
6	166.7	С				
6-OMe	55.8	CH_3	3.83 s		6	5
7	93.1	CH	6.05 q (2.3, 3.7)	5, 8-OMe	5, 6, 8, 8a	5, 8-OMe
8	162.8	С				
8-OMe	56.0	CH ₃	3.88 s	7	8	7
8a	165.6	С				
9	26.9	CH_2	a: 2.79 q (6.6, 16.7)	2a, 3, 9b	2, 3, 4, 1', 2', 6'	2a, 2b, 3, 9b, 6'
			b: 3.06 m	2a, 2b, 3, 9a	2, 3, 4, 1', 2', 6'	2a, 2b, 3, 9a
1′	125.2	С				
2′	155.1	С				
2'-OH			9.65 brs			
3'	117.8	CH	6.94 dd (8.1, 14.1)	4′	1', 2', 5'	4′
4′	128.6	CH	7.13 m	3', 5', 6'	2', 3', 5', 6'	3', 5', 6'
5'	120.4	CH	6.82 t (7.1)	4', 6'	1', 3', 4', 6'	4', 6'
6'	131.0	CH	7.04 dd (0.9, 7.1)	4', 5'	9, 1', 2', 4'	9a, 4', 5'
89						

Table S2. Full NMR data for oleracone K (2) in CDCl₃

90 Table S3. IC_{50} (μM) for antioxidant and acetylcholinesterase activities of compounds

Compounds and standard Inhibitors	DPPH IC 50 (IIM)	AChE IC ₅₀ (µM)
	19.24 ± 0.02	50.09 ± 0.05
1	18.34 ± 0.03	59.08 ± 0.05
2	23.92 ± 0.01	67.89 ± 0.09
Eserine	-	33.26 ± 0.03
ВНА	57.41 ± 0.05	-

Eserine and BHA as positive control, and values are expressed as the means \pm SD for

92 *n* = 5.

94

95 Figure S1. Key HMBC correlations of oleracone J (1)

96

99 Figure S2. Key ¹H-¹H COSY and ROESY correlations of oleracone J (1)

Oleracone K (2)

102 Figure S3. Key HMBC correlations of oleracone K (2)

109 Figure S5. ¹H NMR (600 MHz) spectrum of oleracone J (1) in $CDCl_3$

117 Figure S6. ¹³C NMR (150 MHz) spectrum of oleracone J (1) in CDCl₃

124 Figure S7. DEPT spectrum of oleracone J (1) in CDCl₃

Figure S8. HSQC spectrum of oleracone J (1) in CDCl₃

138 Figure S9. HMBC spectrum of oleracone J (1) in CDCl₃

141 Figure S10. ¹H-¹H COSY spectrum of oleracone J (1) in CDCl₃

153 Figure S13. ¹H NMR (600 MHz) spectrum of oleracone K (2) in CDCl₃

161 Figure S14. ¹³C NMR (150 MHz) spectrum of oleracone K (**2**) in CDCl₃

168 Figure S15. DEPT spectrum of oleracone K (2) in CDCl₃

Figure S16. HSQC spectrum of oleracone K (2) in CDCl₃

182 Figure S17. HMBC spectrum of oleracone K (2) in CDCl₃

Figure S18. ¹H-¹H COSY spectrum of oleracone K (2) in CDCl₃

196 Figure S21. DPPH radical scavenging activities of compounds 1-2 and BHA

197 The values are expressed as the means \pm SD for n = 5.

Figure S22. Anticholinesterase effect of compounds 1-2 and Eserine 200

The values are expressed as the means \pm SD for n = 5. 201

- 203
- Figure S23. Compounds 1-2 binding mode to AChE
- 205 (A) oleracone J (B) oleracone K.
- 206 Carbons are colored in cyan in the compounds and yellow in the residues of protein.
- 207 Hydrogen bonds are drawn as green dashes.