Appendix to “Variational approximation for
mixtures of linear mixed models” published in the

Journal of Computational and Graphical Statistics

Siew Li Tan and David J. Nott

Dec 2012



A Derivation of variational lower bound for Algorithm 1

The variational lower bound can be written as E,{logp(y,0)} — E,{logq(8)}, where E,(-)
denotes the expectation with respect to ¢. Consider the first term, E,{log p(y,0)}. Let (;; =

I(z; = j) where I(-) denotes the indicator function. We have
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Taking expectations with respect to ¢, we obtain
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where I'(-) and ¢(-) denote the gamma and digamma functions respectively, p;; is evaluated
by setting 0 = uf, (ug) denotes the prior distribution for § evaluated at ul, &; = y; —Xiﬂ%j —
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Turning to the second term, E {logq(f)}, we have
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and putting (1) and (2) together gives the lower bound for Algorithm 1.
B Algorithm 2 (partial centering when X; = )
(Updates in steps 4 and 7 remain the same as in Algorithm 1 with s; = p.) Initialize: ¢;; for
1=1,...,n,7=1,. kub,uﬁ,;jand)\q for j =1, .. ,k,)\q forj=1,..,k 1=1,..g.

Do until the change in the lower bound between iterations is less than a tolerance:
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The variational lower bound is given by
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where w;; = y; — Xipgl, — Vi/fgj. In the examples, when Algorithm 2 is used in conjunction

q
with the VGA to fit a 1-component mixture (j = 1), we set ¢;; = 1 for i = 1,...,n, /\q =1
af ‘1

forl=1,...,9, % =1, /\q = 0.1, ,ub =0 and ,uﬁ, = 0 for initialization .
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C Algorithm 3 (full centering when X; =W, =V})

(Updates in step 4 remains the same as in algorithm 1.) Initialize: ¢;; for ¢ = 1,...,n, j =
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The variational lower bound is given by
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D Example on clustering of yeast galactose data

The yeast galactose data of Ideker et al. (2001) has four replicate hybridizations for each
of 20 cDNA array experiments. We consider a subset of 205 genes previously analyzed by
Yeung et al. (2003) and Ng et al. (2006) whose expression patterns reflect four functional
categories in the Gene Ontology (GO) listings (Ashburner et al., 2000). Approximately 8%
of the data are missing and Yeung et al. (2003) used a k-nearest neighbour method to impute
the missing data values. Yeung et al. (2003) and Ng et al. (2006) evaluated the performance
of their clustering algorithms by how closely the clusters compared with the four categories
in the GO listings. They used the adjusted Rand index (Hubert and Arabie, 1985) to assess
the degree of agreement between their partitions and the four functional categories.

We use this example to illustrate the way that our model can make use of covariates in the



mixing weights, unlike previous analyses of this data set. In particular, we use the GO listings
as covariates in the mixture weights. Let u; be a vector of length d = 4 where the [th element
is 1 if the functional category of gene ¢ is [ and 0 otherwise. Instead of looking at the data with
missing values imputed by the k-nearest neighbour method, we consider the original data
containing 8% missing values, since our model has the capability to handle missing data. This
data set can be accessed from http://expression.washington.edu/publications/kayee/
yeunggb2003/gal2056.txt. Taking n = 205 genes, let y;, denote the rth repetition of
the expression profile for gene ¢ at experiment ¢, 0 < r < 4, and R;; denote the num-
ber of replicate hybridizations data available for gene ¢ in experiment ¢, ¢ = 1,...,205,
t =1,...,20. For each i = 1,...,n, y; is a vector of n; observations where n; = ?21 R
and ¥; = (Yir1, - Yi1ds s Yi 20,15 - yi’20’4)T, with missing observations omitted. V; is a n; x 80
matrix obtained from Igy by removing the (¢r)th row if the observation for experiment ¢ at

the rth repetition is not available. X; is a n; x 20 matrix,

1Ri1 ORil ORM
X, = 0Ri2 1Ri2 ORiQ
ORi20 ORiQO ]‘Ri20

and W; = X;. For the error terms, we set ¢ = 20 with k; = Ry, 1 =1,...,n, 1l =1,...,¢,
so that the error variance of each mixture component is allowed to vary between different
experiments. We used the following priors, § ~ N(0,10001), 5; ~ N(0,10001) for j = 1,..., k,
and 1G(2,0.12) for 02]_, O'Zj, j=1,..,k and 0]2-1, j=1..k1l=1,..,g9.

Applying VGA using Algorithm 2 (with partial centering) for five times, we obtained a
7-component mixture on all five trials with similar results. The clustering of a 7-component
mixture with the highest estimated log marginal likelihood among the five trials is shown in
Figure 1. Some merge moves such as merging cluster 1 with 2, cluster 4 with 7 or cluster
4 with 6 were considered but these did not result in a higher estimated log marginal likeli-
hood. The same holds for the other 7-component mixtures. The number of optimal clusters
obtained using VGA is the same as that reported in Ng et al. (2006) although there are
slight differences in the clusterings. In particular, instead of having one cluster containing
all the genes from Category 4, we observed that two or three of the genes in Category 4

were consistently separated from the cluster containing the remaining genes from Category

4. Fitted probabilities from the gating function are shown in Figure 2. These were obtained
exp(ul§;)

by substituting § with pf from the variational posterior into P(z; = j) = pi; = T T
=1 i 9l
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Figure 1: Clustering results for yeast galactose data obtained from VGA using Algorithm 2.
The z-axis are the experiments and y-axis are the gene expression profiles. GO listings were
used as covariates in the mixture weights.

which represents the probability that observation ¢ belongs to component j of the mixture
conditional on the category that observation i belongs to in the GO listings.

To investigate the impact of reparametrizing the model using hierarchical centering, we
applied VGA using Algorithm 1 five times. This time, we obtained a 6-component mixture
twice and a 7-component mixture thrice. The average estimated log marginal log likelihood
attained by Algorithm 1 was 7901 which is lower than the average of 8201 attained by
Algorithm 2. For fitting a 7-component model, VGA with Algorithm 1 took an average of
3418 seconds, while Algorithm 2 took an average of 1758 seconds. While these results may
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Figure 2: Fitted probabilities from gating function. The z-axis are the clusters and y-axis
are the probabilities.



not be conclusive, the gain in efficiency in using Algorithm 2 over Algorithm 1 is clear.
By using hierarchical centering, the computation time was reduced by nearly half in this

example.
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