
Supplementary Material for “Bayesian
Double Feature Allocation for Phenotyping

with Electronic Health Records”

A. Additional Results for Simulation Studies

Sensitivity analysis. We chose τ = τ 2w = 100 in our simulation studies and applica-
tion. Here we perform a sensitivity analysis on a range of hyperparameter values (τ, τ 2w) ∈
{(50, 100), (75, 100), (125, 100), (150, 100), (100, 50), (100, 75), (100, 125), (100, 150)} using sim-
ulations, each repeated 50 times. We denote eK the proportion of the repetitions where
K̂ 6= K, eA the mis-allocation rate, and eB and eC the error rates in estimating B and C.
These four operating characteristics are summarized in Table 1. The proposed model is not
sensitive to the choice of hyperparameters.

Hierarchical prior. We test the proposed method with the hierarchical prior in (2) using
aσ = bσ = 0.01. The performance is very similar to that of the non-hierarchical prior:
eK = 4%, eA = 0.03, eB = 0.01 and eC = 0.01.

Consensus Monte Carlo. We propose a simple consensus Monte Carlo (CMC) algorithm
to scale up DFA to large sample size. The CMC algorithm goes as follows.

1. Randomly split the data into S subsets where S depends on the computation resources
at hand.

2. Run the MCMC algorithm described in Section 4 to each subset in parallel.

3. Combine the posterior draws of two latent diseases if they share a similar set of symp-
toms. Specifically, we consider two latent diseases to be similar if the proportion of
different symptoms is less than ε.

CMC essentially divides a large dataset into many smaller subsets which are easier and
faster to process. We assess the performance as well as the speed of the proposed CMC with
simulations. We follow the same simulation setup in Scenario I except that we now expand
the sample size 50 times larger n = 300×50 = 15, 000. We choose S = 50 and ε = 0.50. The
total computation time is less than 5 minutes. Though it overestimates K by 2, it estimates
A,B and C quite well (after removing the two extra columns): eA = 0.03, eB = 0.01 and
eC = 0.01. The performance is relatively robust with respect to the choice of ε: ε = 0.25
and ε = 0.75 yield virtually the same performance as ε = 0.50. However, when we set ε to
0.05, the estimated number of latent diseases goes up to 67 whereas the truth is 6.
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Table 1: Sensitivity analysis of τ and τ 2w. We use the following notations. eK : the proportion

of the repetitions where K̂ 6= K. eA: the mis-allocation rate. eB and eC are error rates in
estimating B and C.

τ , τ 2w = 100 τ 2w, τ = 100
50 75 125 150 50 75 125 150

eK 0.10 0.06 0.04 0.04 0.06 0.02 0.04 0.06
eA 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03
eB 0.01 0.01 0.01 0.01 0.01 0.00 0.00 0.00
eC 0.03 0.02 0.01 0.01 0.01 0.01 0.01 0.01

B. Additional Results for EHR Data Analysis

Parameter estimation. We report the posterior mean of {Wj, ζj}pj=1 and {W−
l ,W

+
l , η

−
l , η

+
l }

q
l=1

on inverse-logit scale in Figures 1-3. Inverse-logit is defined as

inv-logit(x) =
exp(x)

1 + exp(x)
.

Each dot is a symptom-disease relationship of which the weight is marked on the y-axis. Dots
of the same type correspond to the same symptom of which the baseline weight is marked
on the x-axis.

MCMC convergence. The acceptance rates for parameters updated by Metropolis-Hasting
transition probabilities are 25% ({ζj}pj=1), 11% ({η−l , η

+
l }

q
l=1) and 33% ({Wj}pj=1, {W−

l ,W
+
l }

q
l=1).

We monitor the MCMC convergence using the potential scale reduction factor (PSRF Gel-
man & Rubin 1992). Based on five parallel chains with different starting values, we calculate
PSRF for the sampling log-density (defined in Section 2.3), a quantity that is invariant to
“label switching”. The point estimate and the upper 95% confidence limit of PSRF are both
equal to 1, which indicates no lack of convergence.

Goodness-of-fit diagnostics. We perform a chi-square test proposed by Yuan & Johnson
(2012). We follow their procedure.
1. Let fz and Fz be the probability mass function and cumulative distribution function for
zij. Define z

(t)
ij = Fz(zij − 1|θ(t)) + uijtfz(zij|θ(t)) where uijt ∼ Unif(0, 1) and θ(t) is the tth

Monte Carlo sample of model parameters θ.
2. Define similar transformation for categorical variables yil. Note that the cumulative
distribution function is not well defined for a categorical variable and therefore we collapse
categorical distribution into Bernoulli distribution. Specifically, let ỹil = I(yil < 0) and let fy
and Fy be the probability mass function and cumulative distribution function for ỹil. Define

y
(t)
il = Fz(ỹil − 1|θ(t)) + viltfy(ỹil|θ(t)) where vilt ∼ Unif(0, 1). Importantly, z

(t)
ij ’s and y

(t)
il ’s

are iid standard uniform random variables when models are correctly specified.
3. For each t, partition the sample space of z

(t)
ij into K1 = 2 groups based on whether

fz(zij|θ(t)) is greater than or less than 0.5. Partition the sample space of y
(t)
il into K2 = 2
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groups in the same way. Let K = K1 +K2 be the total number of groups.
3. Within the kth group for k = 1, . . . , K, place the transformed items z

(t)
ij ’s and y

(t)
il ’s into

L = 10 bins according to quantiles of standard uniform distribution. Let n
(t)
k be the total

number of items in group k and let O
(t)
kl be the observed number of items in bin l and group

k. Compute the χ2 statistic

d
(t)
k =

L∑
l=1

O
(t)
kl − n

(t)
k /L√

n
(t)
k /L

2

.

5. Sum the χ2 statistics to obtain the global pivotal discrepancy measure

d(t) =
K∑
k=1

d
(t)
k ,

which is approximately χ2
K(L−1) distributed when the sample is large and the model is cor-

rectly specified.
In Figure 4, we plot the histogram of d(t)’s and the reference χ2

36 distribution, which
suggests adequate fit.
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Figure 1: Posterior mean of Wj and ζj on inverse-logit scale for j = 1, . . . , p. Each dot is a
symptom-disease relationship of which the weight is marked on the y-axis. Dots of the same
type correspond to the same symptom of which the baseline weight is marked on the x-axis.
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Figure 2: Posterior mean of W−
l and η−l on inverse-logit scale for l = 1, . . . , q. Each dot is a

symptom-disease relationship of which the weight is marked on the y-axis. Dots of the same
type correspond to the same symptom of which the baseline weight is marked on the x-axis.
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Figure 3: Posterior mean of W+
l and η+l on inverse-logit scale for l = 1, . . . , q. Each dot is a

symptom-disease relationship of which the weight is marked on the y-axis. Dots of the same
type correspond to the same symptom of which the baseline weight is marked on the x-axis.
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Figure 4: Goodness-of-fit diagnostics. The posterior distribution of the discrepancy measure
is shown as histogram. The reference χ2

36 distribution is shown as a density curve.
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