Supplemental Material On
“Additive Nonparametric Regression in the Presence of Endogenous Regressors”
Deniz Ozabaci,! Daniel J. Henderson,? and Liangjun Su?

THIS APPENDIX PROVIDES PROOFS FOR SOME TECHNICAL LEMMAS IN THE ABOVE PA-
PER.

Proof of Lemma B.1. By straightforward moment calculations, we can show that E||Q, pp
—Qppl|> = O (k%/n) under Assumption A1(i)-(ii) and A2(vi). Then (i) follows from Markov
inequality. By Weyl inequality [e.g., Bernstein (2005, Theorem 8.4.11)] and the fact that
Amax (A) < ||A]| for any symmetric matrix A (as [Amax (A)]* = Amax (AA4) < ||A||?), we have

Amin (@n,PP) < Amin (QPP) + Amax (@n,pp — QpPP)
< min (@pp) + |@n,pp — QpP|| = Amin (Rpp) +0p (1) .
Similarly,
Amin (@n,PP) Amin (QPP) + Amin (Qn.pp — QpPP)

>
> Amin (@rp) — ||@n,pp — QPP|| = Amin (Qr;) —op (1).

Analogously, we can prove the second part of (ii). Thus (i7) follows. By the submultiplicative
property of the spectral norm, (7)-(i7) and Assumption A2(3),

|@nbr—@rb|, = |@ibr@rr—Quer)@pp|| < |@ubr| I@rr—@uerly, @FEL,

sp S

= 0p(1)Op (w1/n2) Op (1) = Op (k1 /n'/?)

where we use the fact that HQ;}PPHSP = [Amin (Qmpp)]_l = [Amin (Qpp) +0p (1)]7L = 0p (1)

by (i7) and Assumption A2(i). Then (ii7) follows. The proof of (iv)-(v) is analogous to that of
(7)-(4i) and thus omitted. W

Proof of Lemma B.2. (i) By Assumption A1(i) and A2(i), E ||€,,]|> = n~ 2t {3, E(P,P/U2)}
<n ' (14 dk1) Amax (Qppy,) = O(k1/n). Then ||€,,]|> = Op(r1/n) by Markov inequality.
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(73) By the facts that HaHsp = ||a||* for any vector a, |a'b] < ||a|| ||b|| for any two conformable

vectors a and b and that 3/ Asc < Amax (A) ||5¢]|? for any p.s.d. matrix A and conformable vector
», Cauchy-Schwarz inequality, Lemma B.1(i7) and Assumptions A2(iv), we have

ICul® = 1¢ullZ, = Amax (i)

=2 D R o (B) = Ple] o (Z5) — ]
< max {n! i {%IPiPi/% [ml (Z;) - lealf}lm
el —

< Op(k;?") max {n1 Z;/PiPi’%} < Op(K] ) Amax (Qu.pp) = Op(ry ).
i=1

[[[I=1

(¢49) Noting that X;; = my (Z;) + Uy = Plog + Uy + [my (Z;) — Play], by Lemma B.1(it),
w.p.a.1l we have

n - n
- = (Z Pz'P{) ZPz‘Xzz -
=1 =1

n n
= Qubpn ™' PUL + Qopn ™ P [y (Zi) — Ploy]
i=1 i=1
= Q, ppu+ Q, ppCu = ar + ag, say. (C.1)

Note that ay; = Q;llﬁnl + 71, Where 71, = <Q;§DP — Q;;) &, satisfies that

Il < = {er[(@uhp — @5 it (e~ @7)]}
€l [ @ikr = Qb = Op(s t/2) 00} /%) = Op (s f)

IN

by Lemmas B.1(7i7) and B.2(7). For ag;, we have ag = Q;11(n1+r2nl where 79, = (Q;,,}l — Q,g,il) Cni
satisfies that

||T2l|| < ||<nl||sp

Qo — Qpb|| = O (51 OR (k)2 I01/2) = Op (1572 n/2)

by Lemmas B.1(#ii) and B.2(i7). The result follows. B

Proof of Lemma B.3. (i) We only prove the 7 = 1 case as the proof of the other case is almost
identical. By the definition of Uj; and (C.1), we can decompose Uy; — Uy; = [ Xy — my (Z;)] — Uy



as follows

d1 dz
Ui = Ui = (=) + Y [k (Ziks) — fug (Ziea)l + D [mudy 1k (Zaki) — Ty 1k (Zan)]
k=1 k=1
d1 d2
= = —m) = >0 (Z1) Siwarr — Y 0™ (Zani) Star4+k01
k=1 k=1
dl d2
= " (Z1ki) Sikaz — Y 0™ (Zani) St.dy 44021
k=1 k=1
= —uyy — Ul — U3l — U4l — Usli, Say. (C.2)
Then by Cauchy-Schwarz inequality, n~! Z?;l(ﬁlz‘—Uli)QU? <5 Zi:l nTIS w0t =5 Z‘;’ZI

Vii,s, say. Apparently, Vo1 = Op (n71) as i — iy = Op (n™Y/2).

n di1 2
Vale = n_lz<zp'ﬂ (Zlk,i)lglkall> o?

i=1 \k=1

d; n d1
< d Z nt Z (p™ (Zuny) Slkall)2 o =d Ztr (S1ra11a4;S1xQnik,pp)

k=1 =1 k=1
d1 dl

< dl Z )\max (ink,pp) tr (alla/llS/lk;Slk) < dl Z )\max (ink,pp) ||Slk||§p ”allH2 .
k=1 k=1

where Quikpp = nt Z:’L:I p' (Zlk’i)p”“ (Zlk’i)'a? such that Apax(@nikpp) = Op (1) by As-
sumption A3(ii) and arguments analogous to those used in the proof of Lemma B.1(iz). In

2
addition, Sy, = Amax (SuShy) = 1 and faul® < [Qp | el = Or (1) O /m) =
Op(k1/n) by Lemma B.1(i7) and B.2(7) and Assumption A2(7). It follows that V;,; 2 = Op (1) x
2
1 x Op (k1/n) = Op (k1/n) . Similarly, using the fact that ||lag||> < HQ;}PH ¢al12 = O0p (1)
) Sp

Op(k;*"), we have

n /dy 2 d
Vg = nt Z ( ™ (Zlk,i)/Slkam) o? < dy Z Amax (Qnik.pp) HSlngp tr (agay)
=1 \lk=1 =1

= 0p(1) x1x0p(k]*") = 0p(k] ™).
By the same token, V;;; 3 = Op(kin~!) and Vois = Op(/if%).
(77) The result follows from (¢) and the fact that max;<i<y ||®;|| = Op (sox) under Assump-
tion A2(vi).
(7i1) By Assumption A2(vi), Taylor expansion and (i),

oY) - 3 e () B )
=1 =1

< O (§%H) n_l Z (ﬁlz - Uli>2 =O0p (g%rcy%n) )
=1

2 ’ 2

p" ((711') —p" (Ui)




where UlTi lies between ﬁli and Uj;.
(t7v) By Assumption A2(vi), Taylor expansion and triangle inequality,

n

n Yy [p“ <(71i> —-p" (Uli)} ]
i=1

Sp

1
_|_§ =
sp

Tty B (Uﬁ-) @} ((7” - Uli)2
sp

T + T2, where U;; lies between [711- and Up. By triangle and Cauchy-Schwarz inequalities
and (i),

is bounded by Hnil Yo ot (U) @ ([711 - Uli)

P <(71i — Uli)

n
Tnl,l < n_l Z ||pf€ (Uli)Hsp sp
i=1 )

n 1/2 n
{”_12112'?“ (Uzi)HQ} {n_le‘I’in’Uu—Uu
=1 i=1

= Op (H1/2> Op (SoxV1n) = Op (H1/2§0mV1n> :

IN

2}1/2

By triangle inequality and (7), T2 < O (SoxS2k) n-1 Z?:l(ﬁli —Up)? = Op(go,{gg,il/%n). Then
(iv) follows. N N

(v) Let Ty = [p"(Un) — " (Un) s s [P"(Un) — p* (U)]]" and e = (e1,...,€,)". Then we
can write n™1 3" [p*(Uy) — p* (Uy)]e; as n T je. Let Dy, = {(X;,Z;,U;)}; . By the law of
iterated expectations, Taylor expansion, Assumptions Al(i), A3(i3) and A2(vi) and (7)

E{|n ' Thel* 1B} = 0728 [tr (TheeTy)] = n72E [tr (I}, F (e¢'| D) T)
= 072 [p(Un) — " (U)o}
=1
LIS 2
< Op(si)n ™) (Un - Uu) o} = Op (n'i0d,) -
i=1

It follows that anll“;deH =0Op (nfl/ 2§1,€1/1n) by the conditional Chebyshev inequality.

~ 2 . 2
Proof of Lemma B.4. (i) Noting that n =1 > | ) O — By =N 0t ‘ P (Uli> —p"(Un)|
the result follows from Lemma B.3(4i7).
~ 2 . 2
(i4) Noting that Hn—l S <<I>i _ <I>i> ol = o, ’n_l S [p” (Uh) _pr (Uli)} o,

the result follows from Lemma B.3(iv).

(l’LZ) Noting that @m@q) — qu;q) =n! Z?:l(&;l&;; — (I)Z(I);) =n! Z:l:l(gf)z — (I)Z)(‘AISZ — ‘I)i)/
+n~t Zle(&% —®,)®, +n Y ®;(®; — @;)’, the result follows from (i)-(i7) and the triangle
inequality.



(iv) By the triangle inequality H@;}M - Q;(},H HQ” o0 — @, 11@ H + HQ” > Q‘M’H

= P (@)

Arguments like those used in the proof of Lemma B.1(ii) show that Hqu@

= [Mmin (Qaa) + 0op (1)] ! = Op (1) where the second equality follows from (iii) and Lemma
B.1(i7). By the submultiplicative property of the spectral norm and (i),

HQ” o0 — @, <1><1>H = H@;}M (@n,@@ - @n,éé) Q;}@@HSP
< H@;}M Q0 00
sp Sp Sp
= Op (K/I/2§05V1n + §0n§2/iy%n) :
S Q@@H ::OP(K/nuz)bylﬁnnnaBJ(u@.ItﬁmowsﬂmmH@;g¢—-Qg;Hw

= Op (kY%60uv1n + §05§2)€V1n) :

- 2
(v) Noting that H iy (<I>z <I>¢> €;
result follows from Lemma B.3(v).
(vi) Let 0; = g (X;, Z1;,U;) — @8. By triangle inequality, Assumption A2(v), Jensen in-

‘n DD (‘T’z - (I)i> i (k) P30, =O0p(r77)

Op (S1xV1n) = Op (K 7S15V1n) - B

2
, the

e ’n_l >y [p“ (ﬁli) —p° (Uli)] e;

equality and (7) , we have

Proof of Lemma B.5. The proof of (i)-(iz) is analogous to that of Lemma B.2(4)-(ii), re-
spectively. Noting that HQ;(%HSP = O (1) by Assumption A2(ii), we can prove (iiz) by showing
that ||Tnl” = Op(l/ln), where T;,; = nt Z?:l @lélz(ﬁh — Ulz) where §;; = ]')'Li (Uli)l /Bdm—l—dl—&-l' By
triangle inequality and Assumptions A1(ii) and A2(ii7) and (v)

ey, = ax (0] < sup ||garar40 () = P () Bayayal| + 5P 19t tar o ()]

u €Uy wu €U

— O(k)+0(1)=0(1).

By (C.2), Ty =n~ ' 30 @:6(Us — Up) = S0 nt S0 @iiust; = S0y Tots, say.
Let n,, ==t Y0, 03 ®ip™ (Zuk,) and gy, = E (n,,) - Then [[n, — Tl = Op (k61 /n)
by Chebyshev inequality and

17112, = | B [01®ip"™ (Zik)'] Hzp < G Amax (M) =0 (1),

where M = F [‘Dip’“ (Zlk,z‘),] E [p™ (Z1k,) ®;] and we use the fact that A has bounded largest

1
eigenvalue. To see the last point, first note that for k1 < k, E [Cbip’“ (Zlk,i)/] is a submatrix of

A = E (9;®) which has bounded largest eigenvalue. Partition A as follows

1/2)

A A Ais
A= Ay Ay Ass
Az1 Az Ass



/
where A;; = A, for i, j =1,2,3 and £ [@ip™ (Z1g,)]| = [ ho Agy Al | - Then

ApAly A1pAze ApAl,
M = AgpAl, AxpAzn AxnAl,
AsgAly Azl AsgAl,

By Thompson and Freede (1970, Theorem 2), Apax (M) < Amax (A12475) + Amax (A2245,) +

Amax (A324%5,) . By Fact 8.9.3 in Bernstein (2005), the positive definiteness of A ensures that both

A Ax Agp A
and

Ao Az Asz2  Ass

are also positive definite. In addition, Apax (A22A422) = [Amax (Agg)]2 is finite as A has bounded
maximum eigenvalue. It follows that Apax (M) = O (1). Consequently, |9, = Op(1 +
(i1 /m)"/%) = Op (1).

Analogously, noting that 1 is the first element of ®;, we can show that ||n~t > 7", @idiHSp =

Op(1+ (k/n)Y?) = Op (1) .. Tt follows that

Aj9 A}, and Azp AS, have finite maximum eigenvalues as both

1Tl = |0 Yo @idul| 1y = ul = Op (1) Op (n72) = Op (n712),
i=1 sp
dy
Tz + Toall < Y Il IS1llgp (lavell + llazill) = Op (1) O (1) O(v1n) = O(v1n),
k=1

and || T3 + Tnisl| = O(v1n) by the same token. Thus we have shown that || T,;|| = Op(v1y,). B
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