
Supplemental Material On
“Additive Nonparametric Regression in the Presence of Endogenous Regressors”

Deniz Ozabaci,1 Daniel J. Henderson,2 and Liangjun Su3

THIS APPENDIX PROVIDES PROOFS FOR SOME TECHNICAL LEMMAS IN THE ABOVE PA-

PER.
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inequality. By Weyl inequality [e.g., Bernstein (2005, Theorem 8.4.11)] and the fact that
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where we use the fact that
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by () and Assumption A2()  Then () follows. The proof of ()-() is analogous to that of

()-() and thus omitted. ¥

Proof of Lemma B.2. () By Assumption A1() and A2()   kk2 = −2tr{P
=1(

0


2
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≤ −1 (1 + 1) max () = (1). Then kk2 =  (1) by Markov inequality.
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() By the facts that kk2sp = kk2 for any vector  |0| ≤ kk kk for any two conformable
vectors  and  and that κ0κ ≤ max () kκk2 for any p.s.d. matrix  and conformable vector
κ Cauchy-Schwarz inequality, Lemma B.1() and Assumptions A2(), we have
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by Lemmas B.1() and B.2(). The result follows. ¥

Proof of Lemma B.3. ()We only prove the  = 1 case as the proof of the other case is almost
identical. By the definition of e and (C.1), we can decompose e − = [ − e (Z)]−
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as follows
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where 
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