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1 Summary of Relevant Notation

Parameters
Notation Definition
N set of manufacturers.

A set of arcs. (i, j) ∈ A implies that component i is required by manufacturer j.

B the final manufacturer node.

E E = {0, 1, 2, . . . ,M}: the set of tiers in the network.

N(E) the set of nodes in Tier E, where E ∈ E .

K the set of demands for final assembled product.

H the total number of time periods in the scheduling horizon.

Dk the due date of demand k ∈ K at the final assembly node.

Di,k
r the local due date that components i, which will be used for demand k, need to be sent

out along path r.

pred(i) the set of sub-component manufacturers for manufacturer i

R (i) the set of paths r from a manufacturer i to B.

p(i,j) the shipping time from manufacturer i to manufacturer j.

pi the production time at manufacturer i.

capi the capacity of raw material manufacturer i.
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capi,1→t The cumulative capacity of manufacturer i, i.e., cumulative production up to t is

bounded by it.

Q(i,j) the number of components of type i necessary in the production of one component of

type j .

Qi,kr the total components i needed to be on path r in a final product k.

pir the minimum lead time it takes a product from i to be processed and shipped along

r ∈ R(m).

ui the time manufacturer i is restored.

Variables
Notation Definition
Ci,kr,q the time to ship a product q from manufacturer i to meet final product demand k

through path r.

ti,kr,q the tardiness of the product q from manufacturer i for demand k through path r based

on the decision Ci,kr,q .

ti,k the tardiness of the manufacturer i for demand k based on shipping decisions at i alone.

tk the tardiness of demand k at the final assembly node.

T i,kin the tardiness of manufacturer i in meeting demand k based on the arrival of needed

components.

T iin the tardiness of manufacturer i across all demands based on the arrival of needed com-

ponents.

TEin the maximum tardiness of all manufacturers i in Tier E ∈ E based on the arrival of

needed components.

T idis the tardiness of manufacturer i across all demands based on the disruption at i.

TEdis the maximum tardiness of all manufacturers i in TierE ∈ E based on their disruptions.

T i,kout the maximum tardiness of manufacturer i in meeting demand k based on its shipping

decisions.

T iout the maximum tardiness of manufacturer i across all demands based on its shipping

decisions.

TEout the maximum tardiness of all manufacturers i in Tier E ∈ E based on their shipping

decisions.

αir(φ) the earliest arrival time a product from manufacturer i to be processed and shipped at

time φ to the final product through path r ∈ R(i), where r = i − j1 − j2..jn − B,

considering disruptions at the manufacturers on the path.
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τ i,k the tardiness of manufacturer i for demand k based on decisions at i and the disruptions

on paths from i to B.

MSi,K MSi,K = maxr,q,k∈Kα
i
r(C

i,k
r,q ) : the makespan of manufacturer i in scheduling the set

of demands K.

TTRir TTRir = max(maxk,q:tk>0(Ci,kr,q + pir), 0): the time to recover of manufacturer i

through path r.

TTRi TTRi = maxrTTR
i
r = maxkTTR

i,k = maxr,k,q:tk>0α
i
r(C

i,k
r,q ): the time to recover

of manufacturer i.

TTRE TTRE = maxi∈N(E) TTR
i: the time to recover of Tier E.

2 Polynomial time representation for inputs

Table 2: Polynomial time representation for Ci,kr,q

Production Completion Time 1 . . . ui ui + pi ui + 2pi . . .

Production Capacity 0 0 capi capi capi capi

Cumulative Production Capacity 0 0 capi 2capi 3capi . . .

Table 3: Polynomial time representation for Dk

Time 1 2 . . . H

Local demand quantity
∑

k,r:Di,k
r =1

Qi,kr
∑

k,r:Di,k
r =2

Qi,kr . . .
∑

k,r:Di,k
r =H

Qi,kr

Cumulative demand
∑

k,r:Di,k
r ≤1

Qi,kr
∑

k,r:Di,k
r ≤2

Qi,kr . . . |K|
∑

r∈R(i)Q
i,k
r

3 Minimizing the Maximum Tardiness: Proof of Optimality of the EDD

Rule

These additional decision variables, based on our completion times, are necessary for this proof.

T i,kin = maxs∈pred(i),r∈R(s): i∈r,q∈Q(s,i)
ts,kr,q : the tardiness of manufacturer i in meeting demand k based on

the arrival of needed components, before i makes its production/shipping decisions.

T iin = maxk maxs∈pred(i),r∈R(s): i∈r,q∈Q(s,i)
ts,kr,q : the tardiness of manufacturer i across all demands based

on the arrival of needed components, before i makes its production/shipping decisions.
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TEin = maxi∈N(E) T
i
in : the maximum tardiness of all manufacturers i in Tier E ∈ E based on the arrival of

needed components, before the manufacturers make their production/shipping decisions.

T idis = maxk,r(u
i+pi−Di,k

r , 0): the tardiness of manufacturer i across all demands based on the disruption

at i.

TEdis = maxi∈N(E) T
i
dis : the maximum tardiness of all manufacturers s in Tier E ∈ E based on their

disruptions.

T i,kout = maxr,q t
i,k
r,q : the maximum tardiness of manufacturer i in meeting demand k based on its shipping

decisions.

T iout = maxk T
i,k
out : the maximum tardiness of manufacturer i across all demands based on its decisions.

Hence, TBout is the maximum tardiness of the whole system.

TEout = maxi∈N(E) T
i
out : the maximum tardiness of all manufacturers s in Tier E ∈ E based on their

decisions.

By definition, the tardiness at Tier E does not account for any further disruptions up the MEASC network,

i.e., from Tier E − 1, . . . , 1, 0. Therefore, we have Ci,kr,q ≥ maxs∈pred(i)

(
Cs,kr,q + p(s,i), u

i
)

+ pi, i.e., the

completion time of a task k at i is greater than or equal to the arrival of any required sub-component for

task k or the disruption time of i plus the lead time of i. In addition, we have TEout = maxi∈N(E) T
i,k
out =

maxi∈N(E) maxk∈K maxr∈R(i),q t
i,k
r,q = maxi∈N(E),k∈K,r∈R(i),q

(
Ci,kr,q −Di,k

r , 0
)

. We then have that

TEout ≥ max
s∈N(E+1),r∈R(s),q

(
max

(
Cs,kr,q + p(s,i), u

i
)

+ pi −Di,k
r , 0

)
→ TEout ≥ max

s∈N(E+1),r∈R(s),q

(
max

(
Cs,kr,q + p(s,i) + pi −Di,k

r , ui + pi −Di,k
r

)
, 0
)

→ TEout ≥ max
s∈N(E+1),r∈R(s),q

(
max

(
Cs,kr,q −Ds,k

r , ui + pi −Di,k
r

)
, 0
)

→ TEout ≥ max
(
TE+1
out , TEdis

)

This means that for any Tier E, the tardiness is bounded from below by both the schedule-caused

tardiness of the previous tier, TE+1
out , and its own disruption-caused tardiness, TEdis.

The system then has the following property for any schedule:

TM−1
out ≥ max

(
TMout, T

M−1
dis

)
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TM−2
out ≥ max

(
TM−1
out , TM−2

dis

)
≥ max

(
TMout, max

E=M−2,M−1
TEdis

)
. . . . . . . . . . . .

T 1
out ≥ max

(
TMout, max

E=1...M−1
TEdis

)
TBout ≥ max

(
TMout, max

E=0...M−1
TEdis

)

Let TM∗ be the optimal maximum tardiness at tier M . If we can show that the EDD rule can achieve

TBout = max
(
TM∗out ,maxE=0...M−1 T

E
dis

)
, then TBout = TB∗out , i.e, the EDD rule is the optimal solution.

Lemma 3.1. Applying the EDD rule at all raw material manufacturers (Tier M ) minimizes the maximum

tardiness for tier M, TMout = TM∗out .

Proof. At Tier M , consider a schedule O, which violates the EDD, that is optimal. We can apply the

a similar interchange argument to this problem as for the proof of the one machine problem 1||Tmax in

the traditional scheduling literature (Pinedo 2012) : In this schedule there must be at least two adjacent

shipments by a manufacturer s ∈ N(M) such that Cs,k1r1,q1 > Cs,k2r2,q2 and Ds,k1
r1 < Ds,k2

r2 (either r1 6=

r2 or k1 6= k2). This implies that

→


Cs,k1r1,q1 −D

s,k1
r1 > Cs,k2r2,q2 −D

s,k1
r1

Cs,k1r1,q1 −D
s,k1
r1 > Cs,k1r1,q1 −D

s,k2
r2

The maximum tardiness across in Tier M based on the current schedule is

TMout = max
i∈N(M)

T i,kout = max
i∈N(M)

max
k

max
r∈R(i),q

ti,kr,q

= max

(
0, max
i∈N(M),(i,k,r,q)6=(s,k1,r1,q1),(s,k2,r2,q2)

ti,kr , Cs,k1r1,q1 −D
s,k1
r1 , Cs,k2r2,q2 −D

s,k2
r2

)

If we exchange shipment Cs,k1r1,q1 and Cs,k2r2,q2 in our schedule O, then the maximum tardiness is then

T̂
M
out = max

(
0, max
i∈N(2),(i,k,r,q)6=(s,k1,r1,q1),(s,k2,r2,q2)

ti,kr,q , C
s,k2
r2,q2 −D

s,k1
r1 , Cs,k1r1,q1 −D

s,k2
r2

)
≤ TMout

Therefore, schedule O can be modified to follow the EDD rule without increasing the objective function

5



value, i.e., applying the EDD rule gives the optimal value at tier M , i.e., TMout = TM∗out .

Lemma 3.2. The maximum tardiness does not increase between shipping from Tier E + 1 and receiving at

Tier E, TE∗in = TE+1∗
out

Proof. The maximum tardiness of all manufacturers s in Tier E ≥ 1 based on the arrival of needed compo-

nents is:

TEin = max
s∈N(E)

T sin = max
s∈N(E)

max
k

max
i∈pred(s),r∈R(i): s∈r

max
q=1..Qr

ti,kr,q

Based on our assumptions, each path entering Tier E must be from a manufacturer in Tier E + 1, we have

TEin = max
s

max
k

max
i∈pred(s),r∈R(i): s∈r

max
q=1..Qr

ti,kr,q = max
i∈N(E+1)

max
k

max
r∈R(i),q

ti,kr,q = TE+1
out

→ TE∗in = TE+1∗
out

Lemma 3.3. It is optimal to apply the EDD at any Tier E, 1 ≤ E ≤ M − 1 to minimize the maximum

tardiness TEout. The optimal maximum tardiness is equal to either the tardiness of previous tier TE+1∗
out , or

the the disruption-caused tardiness TEdis. T
E∗
out = max

(
TE+1∗
out , TEdis

)
.

Proof. At Tier E, 1 ≤ E ≤M − 1, we have

TEout = max
i∈N(E)

T i,kout = max
i∈N(E)

max
k

max
r∈R(i),q

ti,kr,q = max
i∈N(E)

max
k

max
r∈R(i),q

(
Ci,kr,q−Di,k

r , 0
)

Using the EDD and applying the same proof as we did for the raw material manufacturers in Tier M ,

TE,EDDout = TE∗out . For any schedule, we also have

TEout ≥ max
(
TE+1
out , TEdis

)
→ TEout ≥ max

(
TEin, T

E
dis

)
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We will show TE∗out = max
(
TE∗in , T

E
dis

)
, by showing T i∗out = max

(
T i∗in , T

i
dis

)
∀i ∈ N(E), 1 ≤ E ≤M −1 .

We have

T iin = max
k

max
s∈in(i),r∈R(s): i∈r,q∈1..Qr

(
Cs,kr,q−Ds,k

r , 0
)

T iout = max
k

max
r∈R(i),q∈1..Qr

(
Ci,kr,q−Di,k

r , 0
)

T idis = maxk,r(u
i + pi−Di,k

r , 0)

By way of contradiction, suppose ∃i, T i∗out > max
(
T i∗in , T

i
dis

)
.

Let
{
ŝ, k̂, r̂, q̂

}
= argmaxk,s∈pred(i),r∈R(s): i∈r,q∈1..Qr

(
Cs,k∗r,q −Ds,k

r , 0
)

, i.e., this quadruple has the

largest tardiness into manufacturer i. There must exist
{
k̃, r̃, q̃

}
such that Ci,k̃∗r̃,q̃ −D

i,k̃
r̃ > C ŝ,k̂∗r̂,q̂ −D

ŝ,k̂
r̂ and

Ci,k̃∗r̃,q̃ −D
i,k̃
r̃ > ui + pi−Di,k̃

r̃ .

Using the fact that we start production as soon as i is restored and all components are available,

Ci,k̃∗r̃,q̃ = max

(
max

s∈pred(i)

(
Cs,k̃∗r̃,q̃ + p(s,i)

)
, ui
)

+ pi

If Ci,k̃∗r̃,q̃ = ui + pi, then Ci,k̃∗r̃,q̃ −D
i,k̃
r̃ = ui + pi−Di,k̃

r̃ contradicting T i∗out > T idis

If Ci,k̃∗r̃,q̃ > ui + pi, let s̃ ∈ pred (i) be the manufacturer that has Ci,k̃∗r̃,q̃ = C s̃,k̃∗r̃,q̃ + p(s̃,i) + pi. We then

have

Ci,k̃∗r̃,q̃ −D
i,k̃
r̃ = C s̃,k̃∗r̃,q̃ + p(s̃,i) + pi −Di,k̃

r̃ = C s̃,k̃∗r̃,q̃ −D
s̃,k̃
r̃

→ C s̃,k̃∗r̃,q̃ −D
s̃,k̃
r̃ > C ŝk̂∗r̂,q̂ −D

ŝ,k̂
r̂ ,

which contradicts that
{
ŝ, k̂, r̂, q̂

}
= argmaxk,s∈pred(i),r∈R(s): i∈r,q∈1..Qr

(
Cs,k∗r,q −Ds,k

r , 0
)

. Therefore,

TE∗out = max
(
TE∗in , T

E
dis

)
, which means TE∗out = max

(
TE+1∗
out , TEdis

)
.

Theorem 3.4. Applying the EDD rule for each individual manufacturer minimizes the maximum tardiness

of the whole MEASC network, i.e., TBout.

Proof. Lemma 3.1 shows that if the EDD rule is applied for all raw material manufacturers (Tier M ) then

the maximum tardiness for Tier M is optimal. Lemma 3.2 shows that the maximum tardiness does not

increase between shipping from Tier E + 1 and receiving at Tier E. Lemma 3.3 shows that as we move up
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the tiers and continue to apply the EDD rule, the maximum tardiness TEout at each Tier E is optimal, since

it is either the optimal maximum tardiness of the previous Tier TE+1∗, or the disruption-caused tardiness

TEdis of that tier. Consequently, the maximum tardiness out of the final assembly TBout is optimal as applying

the EDD rule for each manufacturer in the whole system gives the best possible scheduling based on the

disruptions at all the tiers, i.e., we have that

TBout = max
(
TB+1∗
out , TBdis

)
= max

(
TB+2∗
out , TB+1

dis , TBdis

)
= · · · = max

(
TM∗out , max

E=0...M−1
TEdis

)
= TB∗out .

4 Minimizing the Time to Recover: Proof of Optimality of the Decision Rule

We have the following additional decision variables that are necessary for this proof.

τ i,k = maxr,q(α
i
r(C

i,k
r,q )−Dk, 0): the tardiness of manufacturer i for demand k based on the produc-

tion/shipping decisions at i and the disruptions at upper tier manufacturers on paths from i.

TTRir = max(maxk,q:tk>0(Ci,kr,q + pir), 0): the time to recover of manufacturer i through path r.

TTRi,K = maxr,q,k∈K:tk>0α
i
r(C

i,k
r,q ): the time to recover of manufacturer i for a particular set of final

demands K.

TTRi = maxr TTR
i
r = maxr,k,q:tk>0α

i
r(C

i,k
r,q ): the time to recover of manufacturer i.

TTRE = maxi∈N(E) TTR
i the time to recover of Tier E.

Properties of any schedules: For any schedule, we have the following properties for the TTRE :

TTRE = maxi∈N(E)TTR
i

TTRE = maxi∈N(E),r,k,q:tk>0 α
r
i (C

i,k
r,q )

TTRE = maxi∈N(E),r,k,q:tk>0

(
Ci,kr,q + pir,max

m∈r
(um + pmr )

)

It should be noted that the term maxm∈r (um + pmr ) ensures TTRE accounted for the disruptions between

i and B. This differs from how the maximum tardiness is defined. We also have

Ci,kr,q ≥ max

(
max

s∈pred(i)

(
Cs,kr,q + p(s,i), u

i
)

+ pi

)
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→ TTRE ≥ max
s∈N(E+1),r∈R(s),q:tk>0

max
(
Cs,kr,q + p(s,i) + pi + pir,max

m∈r
(um + pmr )

)
→ TTRE ≥ max

s∈N(E+1),r∈R(s),q:tk>0
max

(
Cs,kr,q + psr,max

m∈r
(um + pmr )

)
→ TTRE ≥ TTRE+1

This means that for any Tier E ≤M − 1, the time to recover is bounded from below by that of the time for

recover of Tier E + 1. The system then has the following property for any schedule:

TTRM ≤ TTRM−1 ≤ · · · ≤ TTR2 ≤ TTR1 ≤ TTRB

We will show TTRB = TTRM = TTRM∗, thus implying TTRB = TTRB∗, i.e., the decision rule is

optimal.

4.1 On the Optimality of the Rule for a Single Raw Material Manufacturer

Theorem 4.1. For a set of demands K̃, let MSi,K̃ = maxr,k∈K̃,q

(
Ci,kr,q + pir,maxm∈r (um + pmr )

)
=

maxk∈K̃(Dk + τ i,k) be the makespan of manufacturer i if we assume that the makespan of the system only

depends on the scheduling of i. Applying the LLT rule at a manufacturer i minimizes the makespan for i for

the set of demands K̃.

Proof. We have: MSi = maxr,k,q

(
Ci,kr,q + pir,maxm∈r (um + pmr )

)
. At i, consider a schedule O, which

violates the LLT rule. In this schedule there must be at least two adjacent shipments such thatCi,k1r1,q1 > Ci,k2r2,q2

and pir1 > pir2

→


Ci,k1r1,q1 + pir1 > Ci,k2r2,q2 + pir1

Ci,k1r1,q1 + pir1 > Ci,k1r1,q1 + pir2

The makespan of manufacturers in Tier M based on schedule O is

MSi,K̃ = maxr,k,q

(
Ci,kr,q + pir,max

m∈r
(um + pmr )

)
MSi,K̃ = maxr,k,q

(
Ci,k1r1,q1 + pir1 , C

i,k2
r2,q2 + pir2 , max

(s,k,r,q)6=(i,k1,r1,q1),(i,k2,r2,q2)
Cs,kr,q + psr,max

m∈r
(um + pmr )

)
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If we exchange shipment Ci,k1r1,q1 and Ci,k2r2,q2 in our schedule O, the makespan is then

M̂Si,K̃ = maxr,k,q

(
Ci,k2r2,q2 + pir1 , C

i,k1
r1,q1 + pir2 , max

(s,k,r,q) 6=(i,k1,r1,q1),(i,k2,r2,q2)
Cs,kr,q + psr,max

m∈r
(um + pmr )

)

which is less than or equal to MSi,K̃ , since Ci,k1r1,q1 + pir1 > Ci,k2r2,q2 + pir1 and Ci,k1r1,q1 + pir1 > Ci,k1r1,q1 + pir2 .

Therefore, schedule O can be modified to follow the LLT rule without increasing the objective function

value, i.e., the LLT rule gives the optimal value MSi,K̃ = MSi,K̃∗.

Lemma 4.2. For a subset of demands K̄ that must be late, applying the LLT rule to a manufacturer i

minimizes the time to recover TTRi(K̄) at i for group K̄.

Proof. We know that K̄ must be late. Therefore, TTRi,(K̄) > max
k∈K̄

Dk meaning that there exists k ∈

K̄, ti,k > 0 for any schedule. We have that TTRi,K̄ = maxk∈K̄(Dk + ti,k) = MSi,K̄ From Theorem

4.1, we know that applying the LLT minimizes the makespan. Hence, the LLT rule minimizes the time to

recover at manufacturer i, TTRi,K̄∗ = MSi,K̄∗ for a subset of demands K̄ that must be late.

Preliminary Results for the Reverse EDD Rule

Theorem 4.3. For any set of demands K, if there exists a schedule with maximum tardiness of 0, then the

reverse EDD schedule has the maximum tardiness of 0.

Proof. We know that applying the EDD rule minimizes maximum tardiness (with value 0), as shown in

Theorem 3.4. From the EDD schedule, if we exchange production completion time Ci,k̃r̃,q̃ assigned to the last

demand k̃ (i.e., the demand with largest deadline) with largest production completion time Ci,k̄r̄,q̄ that is less

than or equal to Di,k̃
r̃ . Then the tardiness for k̃ is still 0. Since Ci,k̄r̄,q̄ ≤ Ci,k̃r̃,q̃ , the maximum tardiness for

the remaining demands in K is still 0. Hence, the EDD schedule can be transformed into the reverse EDD

schedule while maintaining the maximum tardiness of 0.

Determining the Time to Recover of the Raw Materials manufacturers

Theorem 4.4. For each raw material manufacturer i, decomposing the subproblems at k(i) generated by

the algorithm in Subsection 5.1 gives the optimal local time to recover TTRi∗ = C(i), where TTRi∗ is

the optimal time to recover considering just manufacturer i and C(i) is the time to recover given by the

algorithm.
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Proof. We have K2 = {k(i) + 1, k(i) + 2, . . . |K|} is the on-time subset of demand since there is a reverse

EDD schedule with maximum tardiness of 0 (Theorem 4.3). Let K1 = {1, 2, . . . , k(i)} be the subset of

remaining demands. We have two situations:

Case 1: K1 = ∅. Then, TTRi∗ = TTRi,K1∗ = 0 = C(i) since all jobs can be completed on time.

Case 2: K1 6= ∅We want to show thatK1 must be late, i.e.,MSi,K1∗ > Dk(i). SupposeMSi,K1∗ ≤ Dk(i).

This implies that MSi,{1,2,...k(i−1)}∗ ≤ Dk(i). Because the iteration did not break at the previous iteration,

that means it is not possible to find a schedule with maximum tardiness of 0 for the subset of demands

{k(i), k(i)+1, . . . |K|}.Since the maximum tardiness ofK2 = {k(i)+1, k(i)+2, . . . |K|} is 0, this implies

that the tardiness of k(i) must be positive. Hence, for the subset K1 = {1, 2, . . . , k(i)}, MSi,K1∗ > Dk(i),

or K1 must be late. Since C(i) is generated by the LLT rule and K1 must be late, TTRi,K1∗ = MSi,K1∗ =

C(i) from Theorem 4.1 and Lemma 4.2. We have TTRi∗ = TTRi,K1∗ = C(i).

Theorem 4.5. Let C̄ = max
i∈N(M)

C(i) be the maximum optimal individual TTR across raw material manufac-

turers i calculated by the algorithm in Subsection 5.1. Decomposing the main problem into 2 subproblems

based on k̄ and applying the decision rules at a raw material manufacturer i gives an updated time to

recover, TTRi ≤ C̄

Proof. Let K1 = K̄ = {k ∈ K|k ≤ k̄} and K2 = {k ∈ K|k ≥ k̄ + 1}. If k(i) = k̄, from Theorem 4.4,

we have that TTRi∗ = C(i) ≤ C̄ since the sets K1 and K2 will not change.

Now, consider the case where k(i) < k̄. Applying the LLT rule forK1 gives TTRi,K1 = MSi,{k∈K1|tk>0∗}

≤ MSi,K1∗ ≤ Dk̄ < C̄ where the second to last inequality comes directly from the definition of k(i) (i.e.,

k(i) < k̄ implying that MSi,K1∗ ≤ Dk̄). In other words, the schedule that was created for manufacturer

i initially for K1 had all tasks being completed by Dk̄ and applying the LLT rule can only decrease the

makespan for this set of jobs at i.

4.2 The decision rules minimize TTR for the whole system: Proofs

Subproblem 1: For subset of final demands k ≤ k̄

We need to show that the LLT rule minimizes the time to recover of the whole MEASC network, i.e., TTRB

for the subset of final demands with deadline before cutoff k̄ determined by the algorithm in Subsection 5.1,

i.e. the subset of final demands that must be late. We will show that applying the LLT rule for all raw

material manufacturers gives the optimal value TTRM∗ (Theorem 4.6). Then, Theorem 4.7 will show that
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as we move up the tiers and continue to apply the LLT rule, the time to recover at a Tier E does not increase

and equals the optimal value of the previous tier time to recover, TTRE∗ = TTRE+1∗. Combining these

two theorems, we can show that the LLT rule gives optimal value of the time to recover at the final assembly

node TTRB∗ = TTRM∗ = C̄.

Theorem 4.6. For SP1 where the set of demands that must be late are those such that k ≤ k̄, applying the

LLT rule for all raw material manufacturers gives the optimal value TTRM = TTRM∗ = C̄.

Proof. From Theorem 4.5, we know that applying the decision rule gives TTRi ≤ C̄ ∀ i ∈ N(M) with

C̄ = maxi TTR
i. Thus, TTRM∗ = maxi∈N(M) TTR

i = C̄. Therefore, TTRM∗ = C̄ is the lowest time to

recover that can be obtained at Tier M since TTRi is a lower bound on the overall time to recover.

Theorem 4.7. For SP1, as we moves up the tiers, applying the LLT rule does not increase the time to recover,

i.e., TTRE∗ = TTRE+1∗

Proof. At Tier E, 1 ≤ E ≤M − 1, we have

TTRE = maxi∈N(E),r,k,q

(
Ci,kr,q + pir,max

m∈r
(um + pmr )

)

Using the LLT rule and applying the same proof as in Theorem 4.4, TTRE = TTRE∗. We want to show

that TTRE∗ = TTRE+1∗ by showing that TTRi∗ = maxs∈pred(i) TTR
s∗∀ i ∈ N(E), 1 ≤ E ≤M − 1 .

We have TTRi = maxrTTR
i
r = maxr,k,q:tk>0α

i
r(C

i,k
r,q ). By way of contradiction, suppose ∃i, where

TTRi > maxs∈pred(i) TTR
s. This implies that

maxr,k,q

(
Ci,kr,q + pir,max

m∈r
(um + pmr )

)
> maxs∈pred(i),r∈R(s):i∈r,k,q

(
Cs,kr,q + psr,max

m∈r
(um + pmr )

)

→



maxr,k,q

(
Ci,kr,q + pir

)
> maxs∈pred(i),r∈R(s):i∈r,k,q

(
Cs,kr,q + psr

)
TTRi = maxr,k,q

(
Ci,kr,q + pir

)
maxr,k,q

(
Ci,kr,q + pir

)
> maxm∈r (um + pmr )
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Let
{
k̂, r̂, q̂

}
= argmaxr,k,q

(
Ci,kr,q + pir

)
= TTRi

→


Ci,k̂r̂,q̂ + pir̂ > maxs∈pred(i),r∈R(s):i∈r,k,q

(
Cs,kr,q + psr

)
Ci,k̂r̂,q̂ + pir̂ > maxm∈r (um + pmr )

Because we start production as soon as all components are available or when the manufacturer is restored,

Ci,k̂r̂,q̂ = max
(

maxs∈pred(i)

(
Cs,kr,q + p(s,i)

)
, ui
)

+ pi if the ordering Cs,kr,q and Ci,kr,q are identical. Note that

since ∀s ∈ pred(i), r ∈ R(s), psr = pir + p(s,i), the order of the schedule in the LLT rule of s and i based

on r should be identical because if psr1 > psr2 , psr1 + p(s,i) > psr2 + p(s,i) → pir1 > pir2 . Therefore, we have

a contradiction. Hence, TTRE∗ = TTRE+1∗. �

Theorem 4.8. The LLT rule minimizes the time to recover of the whole system for demands before or at

cutoff k̄.

Proof. Combining Theorems 4.6 and 4.7 results in the LLT rule achieving TTRB∗ = TTRM∗ = C̄. �

SP2: For the demands after k̄

Applying the EDD rule achieves optimal the maximum tardiness of 0 as shown in Theorem 3.4 since the

process of finding k̄ includes verifying that there exists a schedule with tardiness of 0 for every demand after

k̄. Therefore, TTRB = C̄ remains.

5 Integer Programming Models

This section shows the formulations of the IP models that we use as a comparison with the decision rules.

We begin with the required additional notation:

N ′: the set of nodes that need to be restored.

BigM : a sufficiently large number

qdt: the quantity of final products with demand deadline of t

ship(i,j),t, (i, j) ∈ A: the variable presents amount part i is shipped on arc (i, j) at time t.

proi,t, i ∈ N : the variable presents amount of part i produced at node i at time t where t is the time

production ends.

invi,z,t, i ∈ N : the variable presents amount of part z stored at node i at time t.

13



5.1 Minimizing Maximum Tardiness

Model specific notations:

fdd,t: the variable presents the quantity of the final products received at B at time t, allocated to meeting

the final demands with deadline d

udd,t: the variable presents the quantity of the final demands with deadline d remaining unmet at time t

tbod,t: the variable presents total amount of back-ordered final demands with deadline d at time t.

edd,t:the variable presents total amount of excess final demands with deadline d at time t.

pbod,δ: the binary variable indicates whether there is a positive amount of back-ordered final demands with

deadline d at time t+ δ. i.e., δ is the tardiness.

Minimize TBout (1a)

s.t. proi,t + invi,i,t−1 =
∑

(i,j)∈A

ship(i,j),t + invi,i,t, ∀i ∈ N, t = 1 . . . H

(1b)

ship(s,i),t−p(s,i) + invi,s,t−1 = Q(s,i)proi,t+pi + invi,s,t ∀i ∈ N, s ∈ pred(i), t = 1 . . . H

(1c)

∑
(i,B)∈A

ship(i,B),t−p(i,B)
=

H∑
d=1

fdd,t ∀t = 1 . . . H

(1d)

fdt,t + udt,t = qdt + edt,t ∀t = 1 . . . H

(1e)

fdd,t + udd,t = edd,t d = 1 . . . H,∀t = 1 . . . H, t 6= d

(1f)

tbod,t = tbod,t−1 + udd,t − edd,t d = 1 . . . H, t = 2 . . . H,

(1g)

pbod,δBigM ≥ tbod,d+δ ∀d = 1 . . . H, δ = 0 . . . H − d

(1h)
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TBout ≥
H−δ∑
δ=1

pbod,δ ∀d = 1 . . . H

(1i)

proi,t ≤ capi ∀i ∈ N \N(M), t = 1 . . . H

(1j)

proi,t = 0 ∀i ∈ N ′, t = 1 . . . ui

(1k)

ship(i,j),t, proi,t, invi,z,t, fd
t,t, udd,t, tbod,t, edd,t ≥ 0 (1l)

pbod,δbinary (1m)

5.2 Minimizing the time to recover

Model specific notations:

udt: the variable presents unmet final demand at time t.

edt:the variable presents excess final demand at time t.

tbot: the variable presents total amount of back-ordered product at time t.

pbot: the binary variable indicates whether there is a positive backorders(1 if yes) at time t, i.e. there is a

late demand

dist: the binary variable indicates (with value 1) if the supply chain has not recovered at time t

Minimize TTRB (2a)

s.t. proi,t + invi,i,t−1 =
∑

(i,j)∈A

ship(i,j),t + invi,i,t, ∀i ∈ N, t = 1 . . . H

(2b)

ship(s,i),t−p(s,i) + invi,s,t−1 = Q(s,i)proi,t+pi + invi,s,t ∀i ∈ N, s ∈ pred(i), t = 1 . . . H

(2c)∑
(i,B)∈A

ship(i,B),t−p(i,B)
+ udt = qdt + edt t = 1 . . . H

(2d)
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tbot = tbot−1 + udt − edt t = 2 . . . H

(2e)

pbotBigM ≥ tbot t = 1 . . . H

(2f)

pbot ≤ dist t = 1 . . . H

(2g)

TTRB ≥ t dist t = 1 . . . H

(2h)

proi,t ≤ capi ∀i ∈ N \N(M), t = 1 . . . H

(2i)

proi,t = 0 ∀i ∈ N ′, t = 1 . . . ui

(2j)

ship(i,j),t, proi,t, invi,z,t, ud
t, tbot, edt ≥ 0 (2k)

pbot, dist binary (2l)
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