Appendix 2

2.1 The isotopic effect associated with the imposition of the classical mass and temperature dependence during a reversible process in a closed system with m distinct fractioning species (A, B, C, ….M) is evaluated in this section. 
Let us assume that A is a reservoir for the system (i.e. X1A0>>X1B0, X1C0, …., X1M0, where X1I0 indicates the initial quantity of the most abundant isotope in species I). Both the initial concentration XjI0 of isotope j in I (j=1,2,…,n; I=A,B,…M) and the final concentration X1I of isotope 1 in I are first assumed to be known quantities. 
Thus, for any initial condition and for any subsequent chemical partitioning during a reversible process, we wish to calculate the trace isotope partitioning amongst all possible pairs that is compatible with the final temperature.
Overall, from combinatorics, there could be potentially up to [m*(m-1)]/2 connections to consider, if there is some isotopic exchange among all possible fractioning pairs.
Nevertheless, only a subgroup of m-1 of those connections is strictly independent. Hence, the reversible process is modelled by considering the m-1 pairs A-I (I=B, C, …M). 
To convince oneself about this statement, a lemma, whose proof can be straightforwardly retrieved, is recalled. It states that if isotopic measurements show that A is at equilibrium with both B and C, then B is necessarily at equilibrium with C. 
The final partitioning is found first for the most abundant trace isotope by using the m-1 equations defining the classical temperature dependence for each pairs. The concentration of any other trace isotope in each species is then calculated using the mass dependence. 
The first method for imposing the temperature dependence to the system makes use of m-1 equations of the type (2.1.2).



Manipulating the mass balance equation for the most abundant trace isotope (2.1.3), one gets (2.1.4).





Thus, X3A is readily obtained from known quantities and any X3I is recovered by substituting X3A into (2.1.2). Likewise, the mass dependence for each pair A-I (2.1.5) is used to calculate X2I, once the mass balance equation for isotope 2 (2.1.6) is similarly manipulated to extract X2A (2.1.7).







A second method for imposing the classical temperature makes use of m-1 equations of the type (2.1.8).


Since the system is closed, the mass balance equation is added to get a linear system with m equations and m unknowns X3A, X3B, …X3M (2.1.9). 



It is now shown that (2.1.9) has always a unique solution by demonstrating that the determinant of the associated homogenous system h (2.1.10) can never be zero.


|h|=

This finding implies that the classical temperature dependence should always be satisfied, uniquely, whatever the initial conditions, the chemical partitioning and the number of fractioning pairs involved.
The determinant (2.1.10) is calculated with the usual formula using the last row and is a sum of m terms whose sign depends on the parity of the number m.
The first term, which is denominated (m, 1), is readily calculated with (2.1.11), with () indicating that the sign depends on the parity of m.
 
                                             (m,1)=

The second term (m, 2) is first expressed as a determinant and is calculated using the first row (2.1.12).




The third term (m, 3) is also expressed as a determinant calculated using the second row (2.1.13).



In general, the nth term (m, n) is a determinant calculated using the (n-1)th row and whose sign depends on the parity of the number n (2.1.14).




When considering the parity of m, one has that |h| is a sum of only negative terms if m is even and only positive terms if m is odd (2.1.15).




As result, |h| can never be zero and there is always a unique solution to (2.1.9).
The unknown quantity X3A is calculated using the Kramer rule (2.1.16).





Due to the regularity of the matrix in (2.1.16), the general formula for X3A can be evaluated by induction. The determinants for m=3 and m=4 are calculated with the usual formula by using the last row with (2.1.17) and (2.1.18), respectively.








Omitting a formal proof, by analogy, whatever the parity of m, X3A is obtained with (2.1.19), with ||h|| indicating the absolute value of (2.1.10).



To simplify ||h||, X1A is first factored out (2.1.20).



If the same manipulation is undertaken with X1B (2.1.21) and any other X1I (I=C, D, …, M), one finally has (2.1.22) and X3A is simplified with (2.1.23).




….





Note that no hypothesis on the sign of any IA was required to retrieve X3A. In addition, this approach indicated that the variables Xij0 are unnecessary, as long as Xitot is known. The solution for X3A, X3B,…, X3M has a physical meaning (i.e. the solution gives only non-negative quantities) when X3A is a large reservoir so the quantity under bracket in 2.1.23 is certainly positive.

2.2 If X1B is a function of the continuous variable , (2.2.1) substitutes (2.1.23).



The area of integration in 2.2.1 must be large enough so that any possible state of X1B() is included. If X1B() is normally distributed, with width proportional to  and u being the most probable state with probability M, a value of k=3 or higher should be sufficiently large. 
The integral of 2.2.1 is solved (2.2.3) using (2.2.2) and taking into account that the term in 2.2.2 with the exponential is zero for areas of integration with u as the mid point.

(2.2.2)



By considering the definition of X3B (2.2.4) from the temperature dependence (2.1.8), the passage to continue variables (2.2.5) is also applied to (2.1.7).





Using the expression for the binomial series, X2A is calculated with (2.2.6).




The integration of the sum of terms in (2.2.6) is carried out as a sum of integrals. The first term is by definition Q1. The second integral is, apart from a constant, identical to (2.2.2). The third integral is of the type (2.2.7) so it is expressed with (2.2.8).





The fourth term is calculated to be proportional to  and is found to give a negligible contribution to X2A. As a result, the chosen expression for X2A only in terms of known variables is (2.2.9).




2.3 To show that the expressions for X3A obtained with the two methods give similar results, one can manipulate (2.1.4) into (2.3.1).



[bookmark: _GoBack]By comparison with (2.2.3), (2.3.1) is separated into two terms (2.3.3) using (2.3.2).





Since the approximation in (2.3.4) certainly applies under the condition that A is a large reservoir, X3A is finally simplified with (2.3.5). 





Therefore, the two methods would give identical results only if the usual standard ratios are substituted with  and 
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