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Abstract

We consider estimation in a randomised placebo-controlled or standard-of-

care-controlled drug trial with quantitative outcome, where participants who

discontinue an investigational treatment are not followed up thereafter, and

the estimand follows a treatment policy strategy for handling treatment dis-

continuation. Our approach is also useful in situations where participants

take rescue medication or a subsequent line of therapy and the estimand

follows a hypothetical strategy to estimate the effect of initially randomised

treatment in the absence of rescue or other active treatment. Carpenter

et al. (2013) proposed reference-based imputation methods which use a ref-

erence arm to inform the distribution of post-discontinuation outcomes and

hence to inform an imputation model. However, the reference-based imputa-

tion methods were not formally justified. We present a causal model which

makes an explicit assumption in a potential outcomes framework about the

maintained causal effect of treatment after discontinuation. We use mathe-

matical argument and a simulation study to show that the “jump to refer-

ence”, “copy reference” and “copy increments in reference” reference-based

imputation methods, with the control arm as the reference arm, are special



cases of the causal model with specific assumptions about the causal treat-

ment effect. We also show that the causal model provides a flexible and

transparent framework for a tipping point sensitivity analysis in which we

vary the assumptions made about the causal effect of discontinued treatment.

We illustrate the approach with data from two longitudinal clinical trials.

Key words: Clinical trial, De facto estimand, Missing data, Multiple im-

putation, Sensitivity analysis, Reference-based imputation, Causal inference.

Running head: Causal model for reference-based imputation
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1 Introduction

Missing outcome data represent a major threat to the validity of randomised

controlled trials (RCTs), and appropriate analysis methods have been much

discussed. An influential report showed that different analysis methods may

target different estimands (different measures of treatment effect) and ar-

gued that specification of the estimand is an important part of trial design

and should inform trial analysis and reporting (National Research Council,

2010). Regulators have joined the call for estimands to be defined clearly, and

the International Council for Harmonisation of Technical Requirements for

Pharmaceuticals for Human Use (ICH) Steering Committee have endorsed

the development of new regulatory guidance on the choice of estimands and

sensitivity analysis in clinical trials (European Medicines Agency, 2017).

We consider two types of estimand considered by National Research

Council (2010): (E1) difference in outcome improvement at the planned end-

point if all participants had tolerated or adhered to trial protocol; (E2) dif-

ference in outcome improvement at the planned endpoint for all randomised

participants. The former measures how treatment works in an ideal setting

(efficacy), while the latter measures how treatment might work in practice

(effectiveness). To encompass outcomes that measure harms of treatment,

Carpenter et al. (2013) (henceforth CRK) proposed the broader terms de
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jure and de facto estimand for (E1) and (E2) respectively. The ICH E9(R1)

draft addendum (European Medicines Agency, 2017) refers to a “hypothet-

ical strategy” and a “treatment policy strategy” in defining estimands (E1)

and (E2) respectively.

Sometimes investigators continue to collect data after treatment discon-

tinuation. The use of such off-treatment data depends on the estimand (Per-

mutt, 2016). For the estimation of a de jure estimand, off-treatment data for

participants who discontinued randomised treatment could be used in a com-

plier average causal effect analysis (Dunn et al., 2003). In practice, however,

off-treatment data are typically either not collected or excluded from the pri-

mary analysis, and the missing data are assumed to be missing at random

(MAR): that is, it is assumed that participants who discontinued treatment

would have benefited from continued treatment in the same way as those who

remained on treatment. However, estimation of a de facto estimand ideally

makes use of the off-treatment data, which should be collected where possi-

ble (National Research Council, 2010). When all discontinuers are followed

up and complete outcome data are obtained, the de facto estimand can be

directly estimated by comparing observed means (Little and Kang, 2015).

This paper considers estimation of a de facto estimand for a quantitative

outcome when off-treatment data are not collected. For participants who

have discontinued treatment, this requires assumptions about whether and
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to what extent they continue to benefit from their previous treatment. Our

approach is also relevant to the situation in which rescue treatment (over and

above the per protocol treatment regime for the control arm) is available for

those who discontinue randomised treatment, but interest is in the effect

attributable to the initially randomised treatment without the confounding

effects of rescue medications (corresponding to estimand 6 in Mallinckrodt

et al. (2012)), and data after rescue is either unavailable or is ignored.

In previous work on this topic, Little and Yau (1996) presented a multi-

ple imputation (MI) approach that could incorporate a variety of alternative

assumptions about the treatment effect after treatment discontinuation for

the estimation of de facto estimands in RCTs. CRK presented a generic

algorithm for MI of post-discontinuation outcome data. They assumed that

post-discontinuation outcomes in a given trial arm behave in some way like

outcomes in a reference arm (often the control arm), and proposed various

specific methods for forming the imputation distribution. These methods

have been called “reference-based imputation” (RBI) or “control-based im-

putation” methods. However, CRK did not theoretically justify these meth-

ods. In this paper, we assume that participants who have discontinued their

randomised treatment receive treatment that is similar to that allocated to

the control arm: thus for reference-based imputation, we take the reference

to be the control treatment, where this is typically either placebo or standard
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of care.

Specification of estimands is clarified by using counterfactual outcomes –

outcomes that have not been or could not have been observed. Such coun-

terfactuals are best described using potential outcomes notation (Little and

Rubin, 2000; Angrist et al., 1996). Our aims in this paper are first to propose

and implement a causal model, using explicit assumptions about the causal

effect of a previously discontinued treatment, and second to show that three

of the RBI methods are special cases of the causal model, and hence to

provide their theoretical justification.

Implementing the causal model requires untestable assumptions, so we

need sensitivity analyses to understand the impact of these assumptions on

inferences and conclusions from the primary analysis. Kenward et al. (2001)

described a principled approach to sensitivity analyses which varies a sensi-

tivity parameter that quantifies deviations from the missing data assumption.

A tipping point sensitivity analysis (e.g. Yan et al. (2009); Liublinska and

Rubin (2014)) extends this approach by varying the sensitivity parameter

until the conclusion from the primary analysis is overturned. The third aim

of this paper is to propose a tipping point sensitivity analysis using the causal

model.

The paper is organised as follows. In Section 2, we set out notation and

define the RBI methods. Section 3 contains the key new material: here we set
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out the causal model and discuss equivalence with RBI methods. In Section

4, we discuss implementation. In Section 5 we verify the equivalence of RBI

and causal model estimates in a simulation study. In Section 6, we illustrate

the proposed approach and demonstrate the tipping point analysis with two

example data sets. We conclude with summary remarks in Section 7.

2 Reference-based imputation (RBI) meth-

ods

2.1 Notation

We consider a two-arm longitudinal RCT with quantitative outcome obser-

vations scheduled at baseline and at tmax occasions after randomisation. Let

Z be the random variable for the participant’s randomised treatment arm:

Z = a for the active treatment arm and Z = c for the control arm. Let Yt

be the random variable for the participant’s outcome at visit t = 0, ..., tmax.

It is convenient to define Y ≤t = (Y0, . . . , Yt), the vector of all outcomes up

to and including visit t; Y >t = (Yt+1, . . . , Ytmax), the vector of all outcomes

after visit t; and Y = (Y0, . . . , Ytmax), the vector of all outcomes. Let D

be the random variable for the participant’s last visit prior to discontinuing

treatment, so D = 0, ..., tmax. Yt is observable for all t but only observed

for t ≤ D, because we assume no off-treatment data. We aim to impute the
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unobserved values of Yt for t > D: we stress that these are the outcomes

that existed but were unobserved, not the outcomes that would have existed

if treatment had been continued.

We define the potential outcome Yt(s) at visit t as the outcome that would

have been observable if, possibly contrary to fact, a participant received

active treatment for s periods only. In particular, Yt(0) is the potential

outcome if never treated, and Yt(tmax) is the potential outcome if always

treated. We define Y ≤t(s), Y >t(s) and Y (s) as before. We let µt(s) =

E [Yt(s)], the mean of the potential outcome at visit t if active treatment

were received for s periods only. Similarly we define µ≤t(s), µ>t(s) and

µ(s). The variance-covariance matrix of the potential outcomes is Σ(s) =

var (Y (s)) with submatrices Σ≤t≤t(s), Σ>t>t(s) and Σ>t≤t(s). We define

the matrix of regression coefficients of potential outcomes after visit t on

those up to visit t as βt(s) = Σ>t≤t(s)Σ≤t≤t(s)
−1, and the residual variance

of the potential outcomes after visit t given those up to visit t as Ωt(s) =

Σ>t≤t(s)Σ≤t≤t(s)
−1Σ>t≤t(s)

T .

Figure 1 illustrates this notation in the case of an adverse outcome which

deteriorates (increases) in the absence of treatment and improves (decreases)

in the presence of treatment. If treatment is discontinued at time s then

mean outcomes up to time s are unaffected (µt(s) = µt(tmax) for t ≤ s)

but outcomes after time s are worsened (µt(s) > µt(tmax) for t > s). The
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notation is summarised in supplementary appendix A.

[FIGURE 1 ABOUT HERE]

This potential outcomes notation allows for only one type of treatment.

We assume that the observed outcomes are not affected by other treatments.

For the outcomes after treatment discontinuation, we assume either that

rescue treatment (over and above the per protocol treatment regime for the

control arm) is not available, or that interest is in the effect attributable to

the initially randomised treatment without the confounding effects of rescue

medications.

The de jure estimand (estimand E1) at visit t > 0 is E [Yt(t)− Yt(0)].

The de facto estimand (estimand E2) is the estimand of interest in this

paper and is E [Yt(D)|Z = a]− E [Yt(0)|Z = c]. Often, primary interest is in

the last visit, t = tmax.

2.2 Reference-based imputation

CRK proposed a generic MI algorithm for this setting:

1. For each treatment arm, fit a multivariate normal model to all observed

data, using a Bayesian approach with an improper prior and assuming

MAR. The model should have unstructured mean and unstructured

variance-covariance matrix.
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2. For each treatment arm, draw a mean vector and variance-covariance

matrix from the posterior distribution.

3. For each treatment arm and each possible treatment discontinuation

visit t, use the draws to build the hypothetical joint distribution of the

outcomes Y ≤t up to time t and the outcomes Y >t after time t, using

one of the methods described below.

4. For each treatment arm and each observed treatment discontinuation

visit t, construct the imputation distribution of Y >t given Y ≤t. Sample

Y >t from this conditional distribution, to create a “completed” data

set.

5. Repeat steps 2-4 m times, resulting in m imputed data sets.

6. Analyse each imputed data set and combine the results using Rubin’s

rules (Rubin, 1987).

To understand the assumptions behind the CRK algorithm, we express

it using the potential outcomes notation.

In step 1, the model is fitted to each treatment arm separately. In the

control arm, the observed outcomes are Yt = Yt(0). In the active treatment

arm, the observed outcomes are Yt = Yt(tmax), because we asume no off-

treatment data. Hence, under MAR assumptions that we make explicit in
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Section 3.1, the multivariate normal model fitted to the control arm has

mean µ(0) and variance Σ(0), and that fitted to the active treatment arm

has mean µ(tmax) and variance Σ(tmax).

In step 2, values of µ(0), Σ(0), µ(tmax) and Σ(tmax) are drawn from their

posterior distributions.

In step 3, the drawn values are used to build hypothetical joint distribu-

tions of Y . Specifically, for participants in the active treatment arm who dis-

continue treatment at time t, a joint distribution is built for Y |Z = a,D = t.

CRK proposed using a multivariate normal distribution. Five methods are

mainly distinguished by their choice of mean:

• Missing at random (MAR): mean = µ(tmax).

• Last mean carried forward (LMCF): mean =
(
µ≤t(tmax), µt(tmax)etmax−t

)
where ep is a row vector (1, . . . , 1) of length p.

• Copy reference (CR): mean = µ(0).

• Jump to reference (J2R): mean =
(
µ≤t(tmax),µ>t(0)

)
.

• Copy increments in reference (CIR):

mean =
(
µ≤t(tmax),µ>t(0) + {µt(tmax)− µt(0)}etmax−t

)
.

CRK proposed corresponding variance matrices. We simplify their de-

scription by observing that only the regression coefficient matrix and con-
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ditional variance matrix of the potential outcomes after visit t given those

before visit t are used in later steps. CRK set these to be βt(tmax) and

Ωt(tmax) for MAR and LMCF, and βt(0) and Ωt(0) for J2R, CIR and CR.

An approach that we call RBI alternative instead uses βt(tmax) and Ωt(tmax)

for all RBI methods.

In step 4, the joint distributions above are used to derive conditional

distributions for Y >t(t)|Z = a,D = t,Y ≤t(t). Under J2R, for example, this

is

N
(
µ>t(0) + βt(0)

{
Y ≤t(tmax)− µ≤t(tmax)

}
,Ωt(0)

)
(RBI)

N
(
µ>t(0) + βt(tmax)

{
Y ≤t(tmax)− µ≤t(tmax)

}
,Ωt(tmax)

)
(RBI alternative)

The rest of the CRK algorithm follows standard MI methods, using the

conditional distribution as the imputation model.

The hypothetical joint distributions under each of these methods are writ-

ten in the notation of this paper in supplementary appendix B. The corre-

sponding imputation distributions for the Z = a,D = t subgroup for any

t < tmax are given under “Reference-based imputation methods” in Table

1. The imputation means are written as a selection term, reflecting how the

D = t subgroup differs from other participants, plus a term linearly related

to the treatment effect up to time t. This motivates our causal model in

section 3, which relates causal treatment effects after D to those up to D.
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[TABLE 1 ABOUT HERE]

3 New causal model

In this section, we first set out the assumptions of the causal model, and then

derive the imputation model.

3.1 Assumptions

Assumption A1. Randomisation is independent of potential outcomes: Z⊥⊥Y (s)

for all s.

Assumption A2. (Y |Z = c) is missing at random (MAR).

Assumption A2 states that the observed outcomes in the control arm are

MAR. If there are no missing data before treatment discontinuation then we

can also write this

p(D = t|Z = c,Y , D ≥ t) = p(D = t|Z = c,Y ≤t, D ≥ t)

for all t. In other words, treatment discontinuation in the control arm does

not relate to future untreated outcomes, given the past and present.

Assumption A3. (Y (tmax)|Z = a) is MAR.

Assumption A3 states that the counterfactual fully treated outcomes in

the active arm are MAR. If there are no missing data before treatment dis-

continuation then we can also write this

p(D = t|Z = a,Y (tmax), D ≥ t) = p(D = t|Z = a,Y ≤t(tmax), D ≥ t)
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for all t. In other words, treatment discontinuation in the active arm does

not relate to future counterfactual fully-treated outcomes, given the past and

present.

We do not assume that the actual outcomes in the active arm, (Y |Z = a),

are MAR. Indeed, this is unlikely to be true, since (if treatment is effective)

treatment discontinuation causally affects actual future outcomes. Thus

treatment discontinuation is allowed to relate to future actual outcomes,

given the past and present.

Assumption A4. Y >t(t)|Y ≤t(t) follows a linear regression for each t.

This assumption implies that the conditional mean of each future po-

tential outcome Yu(t) (u > t) depends linearly on the past observed out-

comes Y1(t), . . . , Yt(t). We make no assumption of linearity in t or u, so

that trajectories over time have no assumed form. A4 is true if Y (t) fol-

lows a multivariate Normal distribution. The linear regression has mean

µ>t(t) + βt(t){Y ≤t(t)− µ≤t(t)} and residual variance matrix Ωt(t).

Assumption A5. p(D = t|Z = a,Y (t)) = p(D = t|Z = a,Y ≤t(t)).

A5 states that treatment discontinuation at visit t is unaffected by future

partly-treated potential outcomes. It appears similar to the equation below

A3, but the latter refers instead to future fully-treated potential outcomes.

If there are no missing data before treatment discontinuation then a stronger
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assumption which implies both A3 and A5 is

p(D = t|Z = a,Y (s), D ≥ t) = p(D = t|Z = a,Y ≤t(s), D ≥ t)

for all t and all s > t.

Assumption A6. E [Y >t(t)− Y >t(0)] = KtE [Y ≤t(t)− Y ≤t(0)].

A6 is an explicit assumption about how the maintained effect of treatment

after discontinuation relates to the effect of treatment before discontinuation.

Equivalently,

µ>t(t)− µ>t(0) = Kt

{
µ≤t(t)− µ≤t(0)

}
. (1)

Kt is a (tmax−t)×(t+1) matrix of sensitivity parameters: it is not identified

by the data and must be specified by the user. Some suggestions for Kt are

made in Section 3.3.

Our model makes no assumption about how the effect of active treatment

changes over time while active treatment is continued. However, implicit in

assumption A6 is that there is no delayed response to the control treatment:

thus when a patient discontinues randomised treatment, we assume the ef-

fects of any treatments they switch to are similar to the effects they would

have experienced had they received the control treatment from the start of

the trial.
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3.2 Modelling outcomes after treatment discontinua-

tion

In this subsection we consider an individual in the active arm who stops

treatment at visit t < tmax. We use the above assumptions to derive a model

for this individual’s outcomes after treatment discontinuation, conditional on

their history Y ≤t. In section 3.3 we take this model as an imputation model

and compare it with the RBI imputation models.

We write the conditional mean outcome after treatment discontinuation

in this model as the sum of three terms:

E[Y >t(t)|Z = a,Y ≤t, D = t] = {E[Y >t(t)|Z = a,Y ≤t, D = t]− µ>t(t)}

+ {µ>t(t)− µ>t(0)}+ µ>t(0) (2)

where the first term represents the difference between the subgroup who

discontinue at visit t and the whole group (“selection term”), the second term

represents the treatment effect in the whole group (“maintained treatment

effect”), and the third term is the untreated mean.

We write the selection term as

E [Y >t(t)|Z = a,Y ≤t(t), D = t] − µ>t(t)

= E [Y >t(t)|Z = a,Y ≤t(t)] − µ>t(t) (by A5)

= E [Y >t(t)|Y ≤t(t)] − µ>t(t) (by A1)

= βt(t)
{
Y ≤t(t)− µ≤t(t)

}
(by A4). (3)
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Using assumption A6, and substituting (1) and (3) into (2), gives the

mean of the imputation model:

E[Y >t(t)|Z = a,Y ≤t, D = t]

= βt(t)
{
Y ≤t − µ≤t(t)

}
+Kt

{
µ≤t(t)− µ≤t(0)

}
+ µ>t(0). (4)

For the variance, we approximate var (Y >t(t)|Z = a,Y ≤t(t), D = t) by

var (Y >t(t)|Z = a,Y ≤t(t)) which is valid when differences between drop-out

patterns are small compared with the variation in the data, and otherwise

conservative. By A1, this is var (Y >t(t)|Y ≤t(t)) = Ωt(t). This imputation

distribution is given under “Causal model” in Table 1.

3.3 Using the causal model

We need to fix three parameters in order to identify the causal model: Kt,

βt(t) and Ωt(t). In most cases the post-discontinuation treatment effect may

be assumed to depend only on the treatment effect at the discontinuation

visit and not on treatment effects at earlier visits, and therefore Kt has

non-zero elements only in the final column; our software implementation

below relies on this assumption. For tipping point sensitivity analyses, we

consider two single-parameter causal models for the outcome at visit u after
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discontinuation at visit t:

E [Yu(t)− Yu(0)] = k0E [Yt(t)− Yt(0)] (5)

E [Yu(t)− Yu(0)] = kvu−vt1 E [Yt(t)− Yt(0)] (6)

where vu, vt are the times (on a suitable scale) of visits u, t. The maintained

treatment effect after treatment discontinuation is constant in model (5) but

decays exponentially in model (6), being multiplied by k1 for every unit of

time, where 0 ≤ k1 ≤ 1. A combined model is

E [Yu(t)− Yu(0)] = k0k
vu−vt
1 E [Yt(t)− Yt(0)] . (7)

Next, we need to fix βt(t), the matrix of regression coefficients of Y >t(t)

on Y ≤t(t). Assumptions A2 and A3 identify βt(0), the regression of Y >t(0)

on Y ≤t(0), and βt(tmax), the regression of Y >t(tmax) on Y ≤t(t), respectively.

We propose assuming either βt(t) = βt(0) or βt(t) = βt(tmax). We call

these “regression from reference” and “regression from active” respectively.

If all treatment effects are homogeneous (i.e. if Y (t) − Y (0) does not vary

between individuals for any t) then βt(t) = βt(tmax) = βt(0) and both

“regression from reference” and “regression from active” are valid. If we

are willing to assume equal variance-covariance matrices across trial arms

(Σ(tmax) = Σ(0)), then βt(tmax) = βt(0) and “regression from reference”

and “regression from active” give the same results. The same arguments and

proposals apply for Ωt(t).
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3.4 Comparison with reference-based imputation

From Table 1, RBI methods J2R, CIR and CR correspond to particular

choices of the causal model, while the MAR and LMCF methods do not cor-

respond to this causal model. Kt is set to 0 for J2R, Ct for CIR, and βt(0)

for CR. This makes precise the statement of Mallinckrodt et al. (2012) that,

under CIR, CR and J2R, the Z = a,D = t subgroup have the treatment

effect at visit t maintained, diminished and eliminated respectively at visit

tmax. Further, βt(t) and Ωt(t) are set to βt(0) and Ωt(0). If the RBI alterna-

tive variance structures are used then the same equivalences apply, but with

βt(t) = βt(tmax) and Ωt(t) = Ωt(tmax).

4 Estimation

The CRK algorithm described in section 2 is easily adapted to impute under

the causal model. Steps 1 and 2 are unchanged, and provide draws of µ(0),

Σ(0), µ(tmax) and Σ(tmax). Step 3 is skipped, since the imputation distri-

bution is directly derived from the causal model. Step 4 starts by imputing

any missing data in the control arm under assumption A2, and any missing

data in the active arm before treatment discontinuation under assumption

A3. It then constructs the imputation distribution for active arm data after

treatment discontinuation using specification of Kt, βt(t) and Ωt(t) as in

17



Section 3.3. Steps 5 and 6 are unchanged.

We describe implementation using the SAS macros developed by James

Roger to perform MI under the RBI methods. These are available at the

web page (on www.missingdata.org.uk) of the DIA working group for missing

data. We modified the Part2A macro to impute under the causal model with

Kt = kCt (8)

where k is a scalar that may vary between participants. This enables causal

model (5) to be implemented by setting k = k0, the same for all partici-

pants. When interest is in the outcome at visit tmax, causal model (6) can be

implemented by setting k = ktmax−D
1 , which varies across participants with

different values of D. The modified macro is available on the DIA working

group web page and sample code is provided in supplementary appendix C.

By default the variance-covariance matrices in the two arms, Σ(tmax) and

Σ(0), are assumed equal, but the user can specify them to be unequal, which

is the case we consider.

Alternative implementations are given in supplementary appendix D.

5 Simulation

We performed a simulation study to verify equivalence of the RBI methods

with the proposed causal model for estimating the treatment effect at the
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final visit, and to assess the impact of mis-specification of Kt and βt(t). Mis-

specification of Ωt(t) has no impact on bias and little impact on variance,

and for brevity is not discussed.

5.1 Design

Details of the data generating mechanism for simulating the observed and

unobserved data are given in appendix E. Briefly, we consider an RCT with

one baseline observation and two post-baseline visits during the treatment

period (that is, tmax = 2). Some active arm participants discontinue treat-

ment after visit 1 and are not observed at time 2; all other participants

continue randomised treatment and are fully observed. The mechanism for

discontinuing treatment is either MCAR or MAR. The data distribution for

the observed data has either β1(2) = β1(0) or β1(2) 6= β1(0): the latter is

designed to make choices of β1(1) important.

For each mechanism for simulating the observed data, we analysed the

data in three ways, each with several different settings. For complete data, we

generated the unobserved data using a maintained treatment effect parameter

k = 0, 0.5, 0.74 or 1 and setting β1(1) = β1(0) or β1(2). For causal model

imputation, we imputed the missing data using the causal model assuming a

maintained treatment effect parameter k̃ = 0, 0.5, 0.74 or 1, and setting β̃1(1),

the assumed value of β1(1), equal to β1(0) or β1(2). For RBI imputation, we
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imputed the missing data using the reference-based imputation methods CR,

CIR and J2R with the variance-covariance matrix taken from the control arm

or from the active arm. In all cases, we estimated the treatment effect from

a linear regression of Y2 on randomised arm and baseline Y0. With imputed

data, standard errors were computed using Rubin’s rules.

5.2 Results

Table 2 displays the average estimated treatment difference at visit 2 for each

data generating mechanism (columns) and each analysis method (rows).

Comparing panels A (analysis of complete data) and B (analysis by causal

model imputation) shows that the causal model imputation methods result

in unbiased estimates when the assumed values of β̃1(1) and k̃ agree with

the true values of β1(1) and k.

Comparing panels B and C (analysis by RBI imputation) shows that

the RBI estimates with variance-covariance matrix drawn from the control

arm (as in CRK) agree with specific cases of the causal model estimates with

β1(1) = β1(0), and the RBI estimates with variance-covariance matrix drawn

from the active arm (as in RBI alternative) agree with specific cases of the

causal model estimates with β1(1) = β1(2). Specifically, J2R corresponds to

k̃ = 0, CIR corresponds to k̃ = 1, and CR corresponds to k̃ = the second

element of β1(1) which is 0.50 or 0.74 depending on the data generating
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mechanism.

Comparing different choices of β̃1(1) when the observed data had either

no selection effect (i.e. under MCAR) or β1(0) = β1(2) (that is, in the first

three data generating mechanisms), we see that choice of β̃1(1) does not

affect estimates, as expected from Section 3.4. Sensitivity to choice of β̃1(1)

was observed in the fourth data generating mechanism (MAR with β1(0) 6=

β1(2)): mean causal model estimates were reduced by 0.29 by assuming

β1 = β1(0) instead of β1 = β1(2). Sensitivity to choice of k̃ was the same

for all values of β1 (see Section 3.4): for example, assuming k̃ = 0 instead of

k̃ = 1 reduced mean causal model estimates by 0.50 irrespective of the value

of β1.

[TABLE 2 ABOUT HERE]

Table 3 displays the average standard error (SE) (the average of the

1000 SEs) and the empirical SE (the sample standard deviation of the 1000

point estimates) for the treatment difference at the final visit. Empirical

and average SEs for J2R and CIR are similar to those for the corresponding

causal model estimates. The SEs for CR are slightly larger than that for the

causal model with k̃ = the second element of β1, because β1 is estimated in

CR while k̃ is an assumed value in the causal model. With MAR data, the

larger average and empirical SEs due to using the variance-covariance matrix
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from the active arm rather than from the control arm arise mainly because

there are no missing data in the control arm and heterogeneity is larger in the

active arm than in the control arm. More importantly, as shown in Seaman

et al. (2014), the results confirm that both RBI and causal model methods

give (1) smaller empirical SEs than the estimator based on the complete

data, and (2) larger average SEs (estimated using Rubin’s rules) than the

empirical SEs of the methods and the empirical SEs based on the complete

data. We comment on these observations in the discussion.

[TABLE 3 ABOUT HERE]

6 Examples

We use two example data sets from randomised, double blind, parallel-group

studies comparing active treatment with placebo. The first is from a trial of

172 participants with major depressive disorders, taken from the DIA page of

www.missingdata.org.uk, and used in the DIA working group to demonstrate

various missing data related analytical methods. The outcome variable is the

17-item Hamilton Depression Rating Scale, HAMD17. The second, kindly

supplied by Devan Mehrotra, is from a pain trial with a pain score as outcome.

In the HAMD17 trial, 76% (64/84) and 74% (65/88) of randomised par-

ticipants completed the final (fourth) visit in the active and placebo arms
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respectively. In the pain score trial, the completion rate at the final (sixth)

visit was 70% (47/67) and 67% (36/54) in the active and placebo arms re-

spectively. In both trials, participants were not followed up after treatment

discontinuation. The observed trajectory means and the frequency of dropout

patterns in each trial are shown in Figure 2.

[FIGURE 2 ABOUT HERE]

We used the SAS 5 macros for implementing the RBI methods and causal

models (Section 4). For the RBI methods, we assumed participants in the

active arm were treated similarly to the placebo arm after discontinuing

the active treatment. To construct the joint distribution of pre- and post-

discontinuation active-arm data under the RBI methods, we first used the

variance-covariance matrix from the placebo arm (RBI analyses) and then

repeated the methods with the variance-covariance matrix from the active

arm (RBI alternative analyses).

Table 4 shows the estimated treatment effect on HAMD17 and pain score

at the final visit from standard MI, MMRM and RBI methods. The stan-

dard MI and MMRM methods estimate the de jure estimand. These differ

slightly for HAMD17 because of a small incompatibility between the impu-

tation and analysis models: the imputation model uses all visits to estimate

a common effect of the baseline covariate PoolInv, but the analysis model
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uses only the final visit. The RBI methods estimate the de facto estimand

and show, as expected, treatment estimates of smaller magnitude than the

de jure estimand, with J2R giving the smallest magnitude of treatment effect

followed by CR. Using the variance-covariance matrix from the active arm

rather than from the placebo arm gives slightly more conservative estimates.

[TABLE 4 ABOUT HERE]

We next demonstrate tipping point sensitivity analyses using causal mod-

els (5) and (6). In model (5), a fraction k0 of the treatment effect is main-

tained at all visits after discontinuation. Figure 3 shows the de facto es-

timates and 95% CI over a range of k0 from -0.5 to 2.5. As shown in the

theory and the simulation results, the J2R and CIR estimates correspond to

using the causal model with k0 = 0 (no maintained treatment effect after

discontinuation) and k0 = 1 (fully maintained treatment effect after discon-

tinuation), respectively. Values k0 < 0 mean that the effect of treatment

after discontinuation is harmful, while values k0 > 1 mean that the effect of

treatment after discontinuation is greater than before discontinuation. The

tipping point analysis on HAMD17 shows that statistical significance is lost

when k0 < 0 (with variance-covariance from the placebo arm) or k0 < 0.05

(with variance-covariance from the active arm). In both cases, this suggests

that the de facto estimate of treatment effect on HAMD17 is non-significant
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only if any benefit of the active treatment is lost immediately following dis-

continuation. For the pain score trial, statistical significance is lost when

k0 < 1.1 or k0 < 1.3 (depending on whether the variance-covariance matrix

is taken from the placebo or the active arm, respectively). This suggests

that, in order for the de facto estimate of treatment effect to be statistically

significant, there would need to be a delayed benefit such that the treatment

effect was greater after discontinuation than before discontinuation. In both

trials, comparing Table 4 with Figure 3 shows that the MAR analyses give

estimates of the de jure estimand that are numerically similar to the causal

model estimates of the de facto estimand when values around k0 = 2 are

assumed.

[FIGURE 3 ABOUT HERE]

In model (6), the treatment effect decays exponentially after discontinu-

ation. Here, k1 = 0 for J2R and 1 for CIR. We took visits as the time scale,

so that vt = t in model (6). Figure 4 shows the de facto estimates of treat-

ment effect at the final visit and its 95% CI from the causal model over a

range of k1. This model does not accommodate the effect of treatment after

discontinuation being either harmful or greater than before discontinuation,

and because of the more limited range of k1, the tipping point is not reached:

all results are statistically significant for HAMD17 and not significant for the

25



pain score.

[FIGURE 4 ABOUT HERE]

7 Discussion

We have considered longitudinal RCTs with quantitative outcomes in which

participants who discontinue an active treatment are not followed up there-

after, but are assumed to receive a treatment similar to the control treatment.

We have focused on estimating the effect of assignment to treatment in the

actual treatment circumstances of the trial (de facto or treatment-policy es-

timand) rather than the treatment effect if all participants had tolerated

or adhered to trial protocol (de jure or hypothetical estimand). We have

proposed a generalised causal modelling approach to account for treatment

discontinuation in the estimation of the de facto estimand. The proposed

causal model makes an explicit assumption about the maintained causal ef-

fect of treatment after treatment discontinuation, and provides flexibility to

perform sensitivity analyses to the causal assumption. The causal model

agrees with RBI methods in certain cases, and this provides a formal justifi-

cation of these RBI methods.

The proposed causal model specifies how much of the treatment effect

is maintained after treatment discontinuation, which we represent by the

26



matrix Kt. We illustrated this with two examples of Kt: equation (5) with

the maintained treatment effect independent of time since discontinuation,

and equation (6) with the maintained treatment effect decaying exponentially

with visits since discontinuation. A simple extension would allow Kt to

depend on the reason for treatment discontinuation. Ideally sponsors should

justify the choice of Kt in the trial protocol based on the nature of the trial

and the treatments.

The choice of regression slope βt(t) in the imputation model, reflecting

within-subject dependence of post-discontinuation outcomes on pre-discontinuation

outcomes, should similarly be pre-specified. It is hard to recommend a single

choice and perhaps both βt(t) = βt(0) and βt(t) = βt(tmax) should be imple-

mented. If the analyst is willing to assume equal variance-covariance matrices

across trial arms then the situation is simpler and βt(t) = βt(0) = βt(tmax)

is the obvious choice. It is sensible to make the corresponding choices for the

residual variance matrix Ωt(t).

Our model has been presented for the case of active arm treatment discon-

tinuation, where subjects who discontinue do not then receive rescue medi-

cation over and above the per protocol treatment regime for the control arm,

or when interest is in the effect attributable to the initially randomised treat-

ment without the confounding effects of rescue medications. An unresolved

problem is how to handle initiation of rescue medications when the confound-
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ing effects of rescue medications are of interest. The model can be extended

to handle the control arm starting active treatment: an assumption like A6

still holds, but the Kt matrix must be replaced by assumptions about how

the treatment effect builds up over time.

Assumption A6 implies that if treatment has no effect before discontin-

uation then it has no effect after discontinuation. This seems reasonable in

general; if it were unreasonable in a particular trial, then a constant term

could be added in assumption A6 and equation (1). Other assumptions are

possible, such as a non-linear model.

We have focussed on varying assumption A6, but we should also assess a

number of other assumptions. The MAR assumptions A2 and A3, and the

related assumption A5, could be made more plausible if the model could

be extended to include further time-dependent covariates. Alternatively

one could explore sensitivity to these assumptions by methods like those

of Ratitch et al. (2013). It is less clear how to assess departures from the

linearity assumption A4.

All the methods we have considered – RBI methods, causal model and

MMRM – make a multivariate Normal (MVN) assumption. Our key finding,

that the causal model and RBI methods are equivalent, is valid even if the

MVN assumption is false. However, failure of the MVN assumption risks

causing bias in all the methods. The assumption can be checked in the
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observed data using standard methods. If the MVN assumption is correct

for the observed data and the maintained treatment effect model (A6) is

correct, then the imputed data have the correct mean, and so the treatment

effect in the imputed data is unbiased even if the MVN assumption is false for

the unobserved data. If data were skewed then it would be wise to consider

a transformation before analysis.

Our model applies to quantitative outcomes. Extension to other outcomes

would be useful.

The repeated sampling variance of the estimated treatment effect tends

to be smaller than the Rubin’s rules estimate of variance for a given Kt

(Table 3). The repeated sampling variance can be approximated in practice

using the delta method (Oehlert, 1992; Liu and Pang, 2016). Carpenter et al.

(2014) argue that the repeated sampling variance is not appropriate, since

it is typically smaller than the complete-data variance (to an extent which

depends on the value ofKt). They also argue that the Rubin’s rules estimate

of variance of the treatment effect is larger than the complete-data variance,

because of the information lost due to the missing data, and this makes it

an appropriate variance (Carpenter et al., 2014; Cro et al., 2019). We point

out that the type I error rate is correct for the repeated sampling variance

and too small for the Rubin’s rules variance, meaning that the Rubin’s rules

variance carries a loss of power: therefore the repeated-sampling variance
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may be appropriate for a primary analysis.

In summary, whilst MI is an attractive and powerful method for han-

dling missing data in both experimental and observational studies, it is not

always clear what estimand is being targeted or what assumptions are being

made about how outcomes for subjects who discontinue randomised treat-

ment relate to those who remain on study. The recent estimands debate

(European Medicines Agency, 2017) has led to a growing recognition that

more complex estimation approaches that do not rely on randomisation may

be needed to handle post-randomisation events that lead to missing data, and

there are calls for causal inference methods to become more widely adopted

(e.g. Akacha et al. (2017); Little and Kang (2015)). We join this call to

encourage greater understanding and application of ideas from the causal in-

ference literature to help support the definition and estimation of estimands

of interest in a randomised clinical trial. We hope that this paper illustrates

how a causal inference framework can provide clarity and rigour in stating

estimands, stating assumptions, and performing estimation.
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Table 1: Imputation distribution of Y >t(t) for t < tmax given randomisation
Z = a, past Y ≤t and treatment discontinuation visit D = t, under various
reference-based imputation methods with control arm as reference (Carpenter
et al., 2013), and under the causal model. Ct is a ‘carry-forward’ (tmax −
t)× (t+ 1) matrix containing t columns of zeroes and a final column of ones,
so that Ctµ≤t(t) is a column vector containing tmax − t copies of µt(t).

Method Imputation distribution
Mean Variance

Reference-based imputation methods
MAR βt(tmax)

{
Y ≤t − µ≤t(t)

}
+µ>t(tmax) Ωt(tmax)

LMCF βt(tmax)
{
Y ≤t − µ≤t(t)

}
+Ctµ≤t(t) Ωt(tmax)

J2R βt(0)
{
Y ≤t − µ≤t(t)

}
+µ>t(0) Ωt(0)

CIR βt(0)
{
Y ≤t − µ≤t(t)

}
+Ct

{
µ≤t(t)− µ≤t(0)

}
+µ>t(0) Ωt(0)

CR* βt(0)
{
Y ≤t − µ≤t(t)

}
+βt(0)

{
µ≤t(t)− µ≤t(0)

}
+µ>t(0) Ωt(0)

Causal model
βt(t)

{
Y ≤t − µ≤t(t)

}
+Kt

{
µ≤t(t)− µ≤t(0)

}
+µ>t(0) Ωt(t)

* The CR mean is more simply written βt(0)
{
Y ≤t − µ≤t(0)

}
+ µ>t(0), but

the expression given here facilitates comparison with the other methods.
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Table 2: Simulation study with D = 1 or 2: estimates of treatment effect at
visit 2 using complete data, causal model imputation and RBI imputation.
β1(0) = (0, 0.5)′ in all cases. β1(2) 6= β1(0) means β1(2) = (−0.12, 0.74)′.

Data generating mechanisms for observed data

MCAR MAR

β1(2) = β1(0) β1(2) 6= β1(0) β1(2) = β1(0) β1(2) 6= β1(0)

A. Complete data generated with:
β1(1) = β1(0)
k = 0.00 0.99 0.99 1.00 0.70
k = 0.50 1.24 1.24 1.25 0.95
k = 0.74 1.36 1.36 1.37 1.07
k = 1.00 1.49 1.49 1.50 1.20

β1(1) = β1(2)
k = 0.00 0.99 1.00 1.00 1.00
k = 0.50 1.24 1.25 1.25 1.25
k = 0.74 1.36 1.37 1.37 1.37
k = 1.00 1.49 1.50 1.50 1.50

B. Causal model imputation with assumed β̃1(1) and k̃

β̃1(1) = β1(0)

k̃ = 0.00 1.00 1.00 1.00 0.71

k̃ = 0.50 1.24 1.25 1.25 0.96

k̃ = 0.74 1.36 1.37 1.37 1.08

k̃ = 1.00 1.49 1.50 1.50 1.21

β̃1(1) = β1(2)

k̃ = 0.00 1.00 1.00 1.00 1.00

k̃ = 0.50 1.24 1.25 1.25 1.25

k̃ = 0.74 1.36 1.37 1.37 1.37

k̃ = 1.00 1.49 1.50 1.50 1.50

C. RBI imputation with assumed variance-covariance and method
Variance-covariance matrix from control arm

J2R 1.00 1.00 1.00 0.71
CR 1.24 1.25 1.25 0.96
CIR 1.49 1.50 1.50 1.21

Variance-covariance matrix from active arm
J2R 1.00 1.00 1.00 1.00
CR 1.24 1.37 1.25 1.38
CIR 1.49 1.50 1.50 1.50

Note: Maximum Monte Carlo standard error < 0.01
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Table 3: Simulation study: average standard error (empirical standard error)
for the treatment difference at the final visit using complete data, causal
model imputation and RBI imputation. β1(0) and β1(2) as in Table 2.

Data generating mechanisms for observed data

MCAR MAR

β1(2) = β1(0) β1(2) 6= β1(0) β1(2) = β1(0) β1(2) 6= β1(0)

A. Complete data generated with:
β1(1) = β1(0)
k = 0.00 0.276 (0.273) 0.318 (0.311) 0.260 (0.255) 0.295 (0.288)
k = 0.50 0.272 (0.269) 0.315 (0.308) 0.261 (0.256) 0.298 (0.291)
k = 0.74 0.302 (0.206) 0.342 (0.247) 0.311 (0.219) 0.351 (0.258)
k = 1.00 0.270 (0.266) 0.313 (0.306) 0.262 (0.257) 0.301 (0.295)

β1(1) = β1(2)
k = 0.00 0.276 (0.273) 0.318 (0.316) 0.260 (0.255) 0.292 (0.288)
k = 0.50 0.272 (0.269) 0.315 (0.312) 0.261 (0.256) 0.296 (0.291)
k = 0.74 0.271 (0.268) 0.314 (0.311) 0.262 (0.256) 0.298 (0.294)
k = 1.00 0.270 (0.266) 0.313 (0.310) 0.262 (0.257) 0.300 (0.296)

B. Causal model imputation with assumed β̃1(1) and k̃

β̃1(1) = β1(0)

k̃ = 0.00 0.310 (0.168) 0.337 (0.189) 0.305 (0.171) 0.328 (0.181)

k̃ = 0.50 0.301 (0.190) 0.327 (0.226) 0.299 (0.189) 0.322 (0.214)

k̃ = 0.74 0.302 (0.206) 0.327 (0.249) 0.301 (0.206) 0.325 (0.237)

k̃ = 1.00 0.305 (0.226) 0.332 (0.277) 0.306 (0.227) 0.332 (0.267)

β̃1(1) = β1(2)

k̃ = 0.00 0.310 (0.168) 0.359 (0.187) 0.315 (0.188) 0.359 (0.206)

k̃ = 0.50 0.301 (0.190) 0.344 (0.224) 0.310 (0.204) 0.350 (0.236)

k̃ = 0.74 0.302 (0.206) 0.342 (0.247) 0.311 (0.219) 0.351 (0.258)

k̃ = 1.00 0.305 (0.226) 0.345 (0.275) 0.316 (0.239) 0.356 (0.285)

C. RBI imputation with assumed variance-covariance matrix and method
Variance-covariance matrix from control arm

J2R 0.310 (0.168) 0.337 (0.189) 0.305 (0.171) 0.328 (0.181)
CR 0.303 (0.192) 0.328 (0.229) 0.306 (0.200) 0.331 (0.226)
CIR 0.305 (0.226) 0.332 (0.277) 0.306 (0.227) 0.332 (0.267)

Variance-covariance matrix from active arm
J2R 0.310 (0.168) 0.359 (0.187) 0.315 (0.188) 0.359 (0.206)
CR 0.305 (0.192) 0.344 (0.249) 0.332 (0.236) 0.370 (0.283)
CIR 0.305 (0.226) 0.345 (0.275) 0.316 (0.239) 0.356 (0.285)

Note: Maximum Monte Carlo standard error < 0.0005

37



Table 4: HAMD17 and pain score data: estimated treatment effect at the
final visit using standard multiple imputation with 100 imputations, mixed
model for repeated measures (MMRM) and RBI methods.

Estimand & HAMD17 Pain score

Method Estimate1 Std. error p-value Estimate2 Std. error p-value

De jure
Standard MI -2.62 0.99 0.01 -0.88 0.39 0.03
MMRM -2.58 1.03 0.01 -0.88 0.39 0.03

De facto
RBI: variance-covariance matrix from the placebo arm

J2R -2.01 1.01 0.05 -0.64 0.40 0.11
CR -2.22 0.99 0.03 -0.75 0.39 0.06
CIR -2.30 0.99 0.02 -0.77 0.39 0.05

RBI alternative: variance-covariance matrix from the drug arm
J2R -1.99 1.01 0.05 -0.60 0.39 0.13
CR -2.20 0.99 0.03 -0.71 0.39 0.07
CIR -2.28 0.99 0.02 -0.73 0.39 0.06

1 Monte Carlo standard error for MI methods is ≤ 0.04.
2 Monte Carlo standard error for MI methods is ≤ 0.02.
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Figure 1: Notation illustrated. Lines indicate mean potential outcomes under
three potential treatment scenarios. Circles indicate observable outcomes for
a participant who discontinues treatment at visit s.
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Figure 2: HAMD17 and pain score data sets: observed mean profile according
the visit at which treatment was discontinued in the active and placebo arms.
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Note: In the pain score data, four subjects in the active arm and two subjects in the
placebo arm did not complete any post-baseline visit and were excluded from analysis.
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Figure 3: HAMD17 and pain score data sets: tipping point analysis for the
estimated treatment effect at the final visit using causal model (5). The
model has a constant treatment effect after treatment discontinuation, equal
to fraction k0 of the treatment effect at treatment discontinuation. The
horizontal solid and dotted lines represent the treatment estimates and their
pointwise 95% CI, respectively. The vertical solid line corresponds to k0 such
that p-value > 0.05 in the left hand side of the line (tipping point).
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Figure 4: HAMD17 and pain score data sets: tipping point analysis for the
estimated treatment effect at the final visit using causal model (6). The
model has the treatment effect decaying exponentially after treatment dis-
continuation, by a ratio k1 for each visit. The horizontal solid and dashed
lines represent the treatment estimates and their pointwise 95% CI, respec-
tively. The tipping point is not attained in the range 0 ≤ k1 ≤ 1.
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Supplementary Appendices – to appear on-line

only

A Summary of notation

Table 5: Notation: random variables

Notation Explanation

Fully observed random variables
Z Randomised treatment arm: Z = a for the

active treatment arm and Z = c for the con-
trol treatment arm.

D Participant’s last visit prior to stopping
treatment: D = 0, . . . , tmax.

Incompletely observed random variables
Yt Quantitative response at visit t, where t =

0, ..., tmax.
Y ≤t = (Y0, . . . , Yt) The vector of all outcomes up to and includ-

ing visit t.
Y >t = (Yt+1, . . . , Ytmax) The vector of all outcomes after visit t.
Y = (Y ≤t,Y >t) The vector of all outcomes.
Potential outcomes if active treatment were received for s periods only,
where s = 0, ..., tmax

Yt(s) Potential outcome at visit t, where t =
0, ..., tmax.

Y ≤t(s) = (Y0(s), . . . , Yt(s)) The vector of all potential outcomes up to
and including visit t. Note that Y0(s) = Y0.

Y >t(s) = (Yt+1(s), . . . , Ytmax(s)) The vector of all potential outcomes after
visit t.

Y (s) = (Y ≤t(s),Y >t(s)) The vector of all potential outcomes.
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Table 6: Notation: parameters of distributions of the potential outcomes

Notation Explanation

µt(s) = E [Yt(s)] The overall mean of the potential outcome at
visit t.

µ≤t(s), µ>t(s), µ(s) Vectors of overall means of the potential out-
comes.

Σ(s) = var (Y (s)) The variance-covariance matrix of the poten-
tial outcomes.

Σ≤t≤t(s), Σ>t>t(s), Σ>t≤t(s) Submatrices of Σ(s).
Ωt(s) Residual variance of the potential outcomes

after visit t given those up to visit t. Equals
Σ>t≤t(s) (Σ≤t≤t(s))

−1 Σ>t≤t(s)
T .

βt(s) Matrix of regression coefficients of potential
outcomes after visit t on those up to visit t.
Equals Σ>t≤t(s)Σ≤t≤t(s)

−1.
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B Hypothetical joint distribution for RBI meth-

ods

We denote the hypothetical joint distribution for active arm participants

who discontinue at time D = t by adding a superscript star to the existing

notation:

Y |Z = a,D = t ∼ N (µ∗,Σ∗)

where µ∗ =

 µ∗≤t

µ∗>t

 and Σ∗ =

 Σ∗≤t≤t Σ∗T>t≤t

Σ∗>t≤t Σ∗>t>t

. Note that (µ∗,Σ∗) are

dependent on t, so this is a mild abuse of notation.

Although CRK described the whole variance Σ∗, only the regression coef-

ficients β∗t and the conditional variance Ω∗t are needed for imputation. Given

the hypothetical joint distribution, the imputation distribution is

Y >t|Y ≤t, Z = a,D = t ∼ N
(
µ∗>t + β∗t (Y ≤t − µ∗≤t),Ω∗t

)
where β∗t = Σ∗>t≤t(Σ

∗
≤t≤t)

−1 and Ω∗t = Σ∗>t>t −Σ∗>t≤t(Σ
∗
≤t≤t)

−1Σ∗T>t≤t.

Table 7 defines the elements µ∗≤t, µ
∗
>t, β

∗
t and Ω∗t for each RBI method.

The results in Table 1 follow.

C Causal model implementation using the SAS

5 macros

The modified macro file ‘Part2A 38 causal.sas’ and the HAMD17 data are

available on the DIA section of the website www.missingdata.org.uk. The
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Table 7: Hypothetical joint distributions proposed by the 5 RBI methods of
Carpenter et al. (2013). e is a vector of ones of length tmax − t.

Method µ∗≤t µ∗>t β∗t Ω∗t
MAR µ≤t(tmax) µ>t(tmax) βt(tmax) Ωt(tmax)
LMCF µ≤t(tmax) µt(tmax)e βt(tmax) Ωt(tmax)
J2R µ≤t(tmax) µ>t(0) βt(0)† Ωt(0)†

CIR µ≤t(tmax) µ>t(0) + {µt(tmax)− µt(0)} e βt(0)† Ωt(0)†

CR µ≤t(0) µ>t(0) βt(0)† Ωt(0)†

† The RBI alternative model replaces βt(0) and Ωt(0) (“control arm vari-
ances”) with βt(tmax) and Ωt(tmax) (“active arm variances”).

HAMD17 data are stored as a SAS data set named Chapter15 example

which we assume has been renamed HAMD.

The modified Part2A macro allows the user to impute under the causal

model by specifying option Method=Causal. The value of k in equation (8)

is specified by Causalk= or defaults to 1 giving the CIR estimate. k can be

specified as a scalar (a constant k for all participants; e.g. Causalk=0.5) or

as a variable that specifies k for each participant (e.g. Causalk=varname).

If k is specified using a variable, that variable must be identified in macro

Part1A using the option id=varname. If Method=Causal is not specified then

RBI methods are implemented and Causalk= is ignored.

Causal model (5) with k0 = 0.5 can be fitted to the HAMD17 data by:

%Part1A(Jobname=Example, Data=HAMD, Subject=Patient, Response=Change,

Time=Visit, Treat=Therapy, Catcov=PoolInv, Covbytime=Basval,

Covgroup=Therapy);

%Part1B(Jobname=Example, Ndraws=100, Thin=100, Seed=12345);

%Part2A(Jobname=Example_causal, Inname=Example, Method=Causal,

Causalk=.5, Ref=Placebo, VCMethod=Ref);
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The option Covgroup=Therapy in the %Part1A call specifies that the

variance-covariance matrix is estimated separately by arm, but Catcov=PoolInv

and Covbytime=Basval specify that the coefficients of the baseline covariates

are assumed equal across arms.

Causal model (6) with k1 = 0.5 can be fitted to the HAMD17 data after

creating a new variable k1power to hold the individual’s value of kvu−vt1 where

u = tmax and t = Da. In these data Visit is coded 0, 4, 5, 6, 7, so we set

vu = 7 and compute vt as the last value of Visit:

proc sql;

create table HAMD2 as

select *, 0.5**(7-max(Visit)) as k1power

from HAMD

group by Patient;

quit;

Although k1power is computed for all individuals, the next steps ignore

values computed in the Z = c arm:

%Part1A(Jobname=Example, Data=HAMD2, Subject=Patient, Response=Change,

Time=Visit, Treat=Therapy, Catcov=PoolInv, Covbytime=Basval,

Covgroup=Therapy, Id=k1power);

%Part1B(Jobname=Example, Ndraws=100, Thin=100, Seed=12345);

%Part2A(Jobname=Example_causal, Inname=Example, Method=Causal,

Causalk=k1power, Ref=Placebo, VCMethod=Ref);

%Part1A and %Part1B need not be repeated for different values of k0 or

k1. The imputed data sets in either case are analysed using

%Part2B(Jobname=Example_causal, Seed=54321);

%Part3(Jobname=Example_causal, Anref=Placebo,

Label=Causal with sigma from reference);
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D Alternative implementations of causal model

D.1 A useful expression for the de facto estimand

We write the de facto estimand at visit tmax as a weighted average over

treatment discontinuation visits:

E [Ytmax(D)|Z = a]−E [Ytmax(0)|Z = c] =
tmax∑
t=0

αt {µtmax(t|Z = a,D = t)− µtmax(0)}

(9)

where αt = p(D = t|Z = a) expresses the discontinuation distribution in

the active treatment arm, and we define µ(s|Z = a,D = s) = E[Y (s)|Z =

a,D = s] etc.

We next write the terms on the right hand side of (9) for t < tmax using

the result in Table 1:

µtmax(t|Z = a,D = t)− µtmax(0) = e′tβt(t)
{
µ≤t(t|Z = a,D = t)− µ≤t(t)

}
+ e′tKt

{
µ≤t(t)− µ≤t(0)

}
(10)

where et = (0, ..., 0, 1)′ of length tmax−t is used to extract the tmaxth element.

Selection effects cancel out over treatment discontinuation visits t. To

use this, note that A4 implies

βt(tmax)
{
µ≤t(t|Z = a,D = t)− µ≤t(t)

}
= µ>t(tmax|Z = a,D = t)− µ>t(tmax)

for each t < tmax, and the sum of the right hand side over t (weighted by αt)

is zero. We sum the left hand side over t (weighted by αt) and take the last
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element, giving

∑
t<tmax

αte
′
tβt(tmax)

{
µ≤t(t|Z = a,D = t)− µ≤t(t)

}
+ αtmax {µtmax(tmax|Z = a,D = tmax)− µtmax(tmax)} = 0

and hence

αtmaxµtmax(tmax|Z = a,D = tmax) = αtmaxµtmax(tmax)

−
∑

t<tmax

αte
′
tβt(tmax)

{
µ≤t(t|Z = a,D = t)− µ≤t(t)

}
. (11)

Finally, substituting equations (11) and (10) into (9) gives

E[Ytmax(D)|Z = a]− E[Ytmax(0)] = αtmax {µtmax(tmax)− µtmax(0)}

+
∑

t<tmax

αte
′
t(βt(t)− βt(tmax))

{
µ≤t(t|Z = a,D = t)− µ≤t(t)

}
+
∑

t<tmax

αte
′
tKt

{
µ≤t(t)− µ≤t(0)

}
.

We can also write this as

E [Ytmax(D)|Z = a]− E [Ytmax(0)|Z = c] = αtmaxδtmax +
∑

t<tmax

αte
′
tKtδt

+
∑

t<tmax

αte
′
t {βt(t)− βt(tmax)}E [Y ≤t(t|Z = a,D = t)− Y ≤t(t)] (12)

where δt = E [Yt(t)− Yt(0)] is the de jure estimand, with δ0 = 0; δt =

(δ0, δ1, . . . , δt)
′. Similar expressions apply at visits t < tmax.

From (12), the bias in the de facto estimate associated with wrongly as-

suming βt(t) to equal β̃t(t) is
∑

t<tmax
αte

′
t

{
β̃t(t)− βt(t)

}
E [Y ≤t(t|Z = a,D = t)− Y ≤t(t)],

and the bias associated with wrongly assumingKt to equal K̃t is
∑

t<tmax
αte

′
t(K̃t−

Kt)δt.
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D.2 Option 2: indirectly using the SAS 5 macros (based
on J2R)

Equation (12) for the de facto estimand at visit tmax can be written as

E [Ytmax(D)|Z = a]− E [Ytmax(0)|Z = c] = δJ2R +
∑

t<tmax

αte
′
tKtδt

where δJ2R is the J2R estimand. Thus we can run the J2R method to estimate

the first term, fit a mixed model for repeated measures to estimate the δt,

directly estimate the αt, and assume values for Kt.

To approximate the standard error, we propose using the Rubin’s rule

estimate of standard error from J2R, as the simulation and empirical results

show that the SEs are not much affected by the value of Kt.

D.3 Option 3: using Mixed Model Repeated Measures
(MMRM) estimates or standard Multiple Impu-
tation (MI)-based estimates

If we are willing to assume either that βt(t) = βt(tmax) or that there is no

selection effect, then the third term in expression (12) vanishes and the de

facto estimand at visit tmax can be written as

E [Ytmax(D)|Z = a]− E [Ytmax(0)|Z = c] = αtmaxδtmax +
∑

t<tmax

αte
′
tKtδt.

That is, the de facto estimate at visit tmax can be estimated as a linear

combination of de jure MAR-based estimates at visits t ≤ tmax. To find the

standard error, we could ignore uncertainty in the α̂t and use the standard
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error of the linear combination, or we could do better by applying the delta

approximation method (Oehlert, 1992) as done by Liu and Pang (2016).

E Details of data generating mechanism for

simulation study

We start by considering which potential outcomes need to be generated. We

assume no impact of future treatments, so we may write Y0(s) = Y0 for

all s and Y1(1) = Y1(2). Thus we only need to specify the distribution of

Y (0) = (Y0, Y1(0), Y2(0)), Y1(1), Y2(1) and Y2(2).

Potential untreated outcomes Y (0) in both arms were generated from a

multivariate normal distribution with mean µ(0) = (10, 12, 14)T and first-

order autoregressive variance-covariance matrix with standard deviation 3

and lag-one correlation 0.5. Potential fully-treated outcomes were derived

using the causal models Y1(1)− Y1(0) = δ1 + u1 and Y2(2)− Y2(0) = δ2 + u1,

where δ1 = 1 and δ2 = 2 are average treatment effects and u1 may vary

between participants to give treatment effect heterogeneity.

In the control arm, we assumed that all participants had complete data.

Observed outcomes Yt in the control arm were set equal to untreated potential

outcomes Yt(0).

In the active arm, we assumed that participants either completed the en-

tire period of treatment and provided complete measurements (D = 2), or
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completed only the first period of treatment and failed to provide measure-

ments at visit 2 (D = 1). The treatment discontinuation mechanism was

logit p(D = 1|Z = a, Y0, Y1(1)) = τ0 + τ1Y1(1). We used two values of τ1: 0

for missing completely at random (MCAR) and 1 for MAR. τ0 was chosen

to give p(D = 1|Z = a) = 0.5. Observed outcomes Yt in the active arm were

set equal to the potential fully-treated outcomes Y0, Y1(1) and Y2(2).

We chose two models for the treatment effects u1 in order to explore the

impact of mis-specification of βt(tmax). Since missing data occur only at

time 2, we needed only consider βt(tmax) for t = 1, that is, β1(2). The

first model had treatment effect homogeneity, u1 = 0, and hence β1(2) =

β1(0) = (0, 0.50)T . The second model had treatment effect heterogeneity,

u1 ∼ N(0, 2.52), and hence β1(2) = (−0.12, 0.74)T 6= β1(0) = (0, 0.50)T . The

latter model resulted in slightly more heterogeneity in the active arm than

in the control arm. We took 250 participants per arm and 1000 replications

for the simulation study.

This completes the mechanism for simulating the observed data. How-

ever, the de facto estimand depends on the unobserved data including the

potential partly-treated outcomes Y2(1) whose distribution has not yet been

specified. We generated Y2(1) from the causal model Y2(1)−Y2(0) = kδ1+u2

where k took values 0, 0.5, 0.74 or 1, and where the marginal distribution

of u2 was the same as that of u1 with either (a) corr(u1, u2) = 0.5, so that
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β1(1) = β1(0), or (b) corr(u1, u2) = 1, so that β1(1) = β1(2). For the

treatment effect homogeneity model, options (a) and (b) are equivalent.
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