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A Numerical integration

When a continuous function ϕ(x) is known analytically for any x, we can efficiently

evaluate integrals of the form

∫
ϕ(x) dx, (1)

by numerical integration methods which are fast, reliable, and accurate. Numerical

integration is not prone to simulation uncertainty and conforms to any desired degree

of precision.

The numerical evaluation of the integral in (1) via a Gauss-Hermite quadrature

designates a set ofM abscissae zj and associated weights h(zj) with j = 1, . . . ,M . We

compute the numerical approximation as

∫
∞

−∞

ϕ(x) dx =

∫
∞

−∞

e−x2

[ex
2

ϕ(x)] dx ≈

M∑

j=1

h(zj)e
z2jϕ(zj), (2)

where M is typically between 20 and 30, and where the weights h(zj) can be tabulated

for different values ofM . For a more detailed discussion on Gauss-Hermite quadrature,

we refer to Monahan (2001). We refer to numerical integration in a general way in our

discussions below but where possible we aim to work with Gaussian integrals for which

analytical solutions may be available in specific applications. In such cases, the use

of the analytical expression will bring further efficiency to our importance sampling

method. Here we focus on the state space model of Section 2 with scalar signal θt, that

is q = 1. Although all results are valid for a high dimensional vector θt, this setting

brings additional and specific computational challenges that are beyond the scope of

this paper. However, our treatment still allows for a high-dimensional state vector αt.

B The NAIS, EIS and SPKD algorithms

Algorithms 1 and 2 outline the full procedure for likelihood estimation using the NAIS

method. Algorithms 1 shows how we compute the likelihood estimate given the im-

portance parameters (without control variables). Algorithm 2 reviews the method for

obtaining the importance parameters. Algorithms 3 and 4 review the Shephard and
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Pitt (1997) and Durbin and Koopman (1997) (SPDK) and EIS methods for obtaining

the importance parameters as implemented in our Monte Carlo and empirical studies.

Given the importance parameters, the two methods estimate the likelihood using Al-

gorithm 1.

Algorithm 1 Importance sampling using an approximating linear state space
model(with antithetic variables for variance reduction)

⊲ Select the importance parameters b and C.

⊲ Obtain the smoothed mean θ̃t of signal θt (t = 1, . . . , n) for the importance model
using either the KFS or the backward-forward (BF) smoother.

⊲ Use a simulation smoothing method for linear state space models to sample S/2
trajectories θ(s) for the the signal. Two options are the simulation smoother of
de Jong and Shephard (1995) and the BF method.

⊲ Compute the antithetic draws θ
(s)
t = 2θ̃t − θ

(s−S/2)
t , for s = S/2 + 1 . . . , S and

t = 1, . . . , n.

⊲ Compute the likelihood of the approximating linear state space model using the
Kalman filter or the BF method of Appendix A.

⊲ Compute the likelihood estimate. The normalising constant at is given by (10) in
the main text under the KFS based method and zero when using the BF method.

C Monte Carlo study: further results

C.1 Three other stochastic dynamic models

We first provide details of three additional stochastic dynamic models which are special

cases of the general nonlinear and non-Gaussian state space model as introduced in

Section 2 of the main paper. The model specifications will be used in our Monte Carlo

and empirical studies below.

C.1.1 Stochastic conditional duration model

Bauwens and Veredas (2004) propose the stochastic conditional duration model for

modelling durations between high-frequency financial transactions. Bauwens and Galli
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Algorithm 2 Efficient importance parameters using NAIS

⊲ Initialise the iteration index k ← 0.

⊲ Set the initial values for the importance parameters b[0], C [0]. We can do this using
a local approximation technique.

⊲ Choose M and obtain the Gauss-Hermite nodes zj with associated weights h(zj)
for j = 1, . . . ,M .

while convergence criterion is not met do

⊲ k ← k + 1

⊲ Given the importance parameters b[k−1] and C [k−1], obtain the smoothed means
θ̃t and variances Vt of the signal θt (t = 1, . . . , n) under the approximating
linear state space model. We can use either the KFS or the BF
smoother for this purpose.

for t=1:1:n do

⊲ Generate θ̃tj = θ̃t + V
1/2
t zj for j = 1, . . . , n.

⊲ Run a weighted least squares regression with

− Dependent variable: log p(yt|θ̃tj ;ψ).

− Explanatory vector: (1 , θ̃tj , −0.5 θ̃
2
tj)

′.

− Weight: exp(1
2
z2j ) h(zj) (fast version) or exp(

1
2
z2j ) h(zj)ω(θ̃tj, yt;ψ).

⊲ The new importance parameters b[k] and C [k] are the coefficients associated
with the second and third independent variables of the WLS regression.

end for

end while

⊲ Set the efficient importance parameters as b = b[k] and C = C [k].
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Algorithm 3 Importance parameters using SPDK

⊲ Initialise the iteration index k ← 0.

⊲ Set the initial value for the mode estimate θ̂
[0]
t , t = 1, . . . , n.

while convergence criterion is not met do

⊲ k ← k + 1

for t=1:1:n do

⊲ Obtain (12) in the main text as second order Taylor series approximation
of the log observation density around the current mode estimate

b
[k]
t =

∂ log p(yt|θt;ψ)

∂θt

∣∣∣∣
θt=θ̂

[k−1]
t

, C
[k]
t = −

∂2 log p(yt|θt;ψ)

∂θt∂θ′t

∣∣∣∣
θt=θ̂

[k−1]
t

end for

⊲ Given the importance parameters b[k] and C [k], update the mode estimate θ̂
[k]
t

by running the KFS under the approximating linear state space model.

end while

⊲ Set the importance parameters as b = b[k] and C = C [k].
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Algorithm 4 Efficient importance parameters using the standard EIS method

⊲ Initialise the iteration index k ← 0.

⊲ Set the initial values for the importance parameters b[0], C [0]. .

⊲ Choose the number of simulations S and a draw set of N(0, 1) common random

numbers (CRN) z
(s)
t , t = 1, . . . , n and s = 1, . . . , S/2. Set the antithetic draws as

z
(s)
t = −z

(s−S/2)
t for s = S/2 + 1, . . . , S.

while convergence criterion is not met do

⊲ k ← k + 1

⊲ Given the importance parameters b[k−1] and C [k−1] and the CRNs, use a
simulation smoothing method for linear state space models to sample S
trajectories θ(s) for the the signal.

for t=1:1:n do

⊲ Run a weighted least squares regression with

− Dependent variable: log p(yt|θ
(s)
t ;ψ).

− Explanatory vector: (1 , θ
(s)
t , −0.5 θ

(s)2
t )′.

− Weight: 1 (fast version) or ω(θ
(s)
t , yt;ψ).

⊲ The new importance parameters b[k] and C [k] are the coefficients associated
with the second and third independent variables of the WLS regression.

end for

end while

⊲ Set the efficient importance parameters as b = b[k] and C = C [k].
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(2009) consider the efficient importance sampling method for the maximum likelihood

estimation of parameters. For an univariate time series of durations yt, we consider

the model

yt ∼Weibull(λt, ξ), λt = exp(c+ αt),

for t = 1, . . . , n, where λt is the time varying scale parameter and ξ is the shape

parameter of the Weibull distribution. The scalar state variable αt is specified as an

autoregressive process of order 1. The set of true parameters is chosen to approximately

reflect the estimation results of Bauwens and Galli (2009) for price durations. In terms

of the state space model specification in Section 2, we have c = 0, Tt = 0.98, Qt = 0.152

and ξ = 1.2.

C.1.2 Stochastic copula

Hafner and Manner (2011) formulate the stochastic copula model for estimating and

forecasting time-varying and possibly nonlinear dependence between the time series.

We consider a dynamic stochastic bivariate t-copula. Let u1t and u2t be two random

variables with uniform (0, 1) marginal distributions. In our simulation study, we take

ut = (u1t, u2t)
′ as probability integral transforms of two independent univariate series.

We denote tν as the standardised Student’s t distribution and 2 × 2 matrix P as

the correlation matrix with unity values on the main diagonal and the correlation

coefficient ρ on the two off-diagonal elements. The t-copula function Cν,P (ut) describes

the dependence structure within the vector ut and is given by

Cν,P (ut) = Tν,P
[
t−1
ν (u1t), t

−1
ν (u2t)

]
,

where Tν,P (a, b) is the cumulative density function for the standardised bivariate Stu-

dent’s t distribution with degrees of freedom ν and correlation matrix P , for any set

of variables {a, b}. The copula is invariant under any standardisation of the marginal

distributions. It follows that

Cν,P (ut) =

∫ t−1
ν (u1t)

−∞

∫ t−1
ν (u2t)

−∞

Γ(ν+2
2
)

Γ(ν/2)
√

(πν)2|P |

(
1 +

x′tP
−1xt
ν

)
−

ν+2
2

dx1t dx2t, (3)
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where xt = (x1t , x2t)
′. A possible state space model for the stochastic copula with a

time-varying correlation coefficient ρt, and hence a time-varying correlation matrix

Pt =

[
1 ρt

ρt 1

]
,

is given by

ut ∼ Cν,Pt
(ut), ρt = 2[(1 + exp(−c− αt))

−1 − 0.5],

for t = 1, . . . , n, where the scalar state vector αt is specified as an autoregressive process

of order 1.

We take the set of true parameters from the empirical study of bivariate time series

of of financial log-returns in Hafner and Manner (2011). Hence the true parameter

values in terms of the state space model in Section 2 are set to c = 1, Tt = 0.98 and

Qt = 0.01. We set dt in the state space model such that the unconditional expectation

of the correlation coefficient ρt is approximately 0.7. Since Hafner and Manner (2011)

do not consider a t-copula, we take the degrees of freedom ν = 5 to obtain sufficient

tail dependence in our simulations.

C.1.3 Dynamic Factor Model for Multivariate Poisson Counts

The dynamic factor model for multivariate counts of Jung, Liesenfeld, and Richard

(2011) is an example of a multivariate non-Gaussian state space model with possibly a

large state vector but with a scalar signal function. Similar multivariate and discrete

time series models are treated by Koopman and Lucas (2008). Here we show that

we can implement the NAIS method can be implemented for this class of models as

well, achieving substantial computational gains. Let yt denote a vector of J counts.

The observations are independently distributed conditional on the state vector αt with

Poisson density as given by

p(yj,t|λj,t) =
exp(−λj,t)λ

yj,t
j,t

yj,t!
, j = 1, . . . , J, t = 1, . . . , n,

where the intensity λj,t is a nonlinear function of the (J + 1) × 1 state vector αt =

(α0,t, α1,t, . . . , αJ,t, )
′. In particular, the log of λj,t is specified as the sum of a common
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autoregressive factor α0,t and an idiosyncratic component αj,t. The signal is given by

θj,t = log(λj,t) = cj + γjα0,t + αj,t, j = 1, . . . , J,

where cj is the intercept and γj is the common factor loading. Each state element

follows an autoregressive process of order 1 as given by

αj,t+1 = φjαj,t + ηj,t, ηj,t ∼ N(0, σ2
η,j), j = 0, 1, . . . , J,

where |φj| < 1 is the autoregressive coefficient and σ2
η,j > 0 is the variance while the

disturbances ηj,t are mutually and serially uncorrelated, for j = 0, 1, . . . , J .

We implement the NAIS method for the multivariate model by formulating a state

space representation as in Section 2 for the univariate time series

y1,1, y2,1, . . . , yJ,1, y1,2, . . . , yJ,n.

The indices j = 1, . . . , J and t = 1, . . . , n follow the data sequence in corresponding

order. Here we adopt the univariate approach of multivariate filtering and smoothing

as discussed in Koopman and Durbin (2000). It is based on the univariate state space

model with scalar signal θj,t = cj+Zj,tαt, j = 1, . . . , J , and the two updating equations

αj+1,t = αj,t, j = 1, . . . , J − 1, and α1,t+1 = TJ,tαJ,t + ηJ,t with ηJ,t ∼ N(0, QJ,t), for

t = 1, . . . , n. The associating time-varying (or index-varying) system matrices are given

by

ZJ,t =

(
γJ

ιJ

)
′

, TJ,t =




φ0 0 0 0

0 φ1 0 0

0 0
. . . 0

0 0 0 φJ



, QJ,t =




σ2
η,0 0 0 0

0 σ2
η,1 0 0

0 0
. . . 0

0 0 0 σ2
η,J



,

for each t, and

Zj,t =

(
γj

ιJ

)
′

, Tj,t = IJ+1, Qj,t = 0,

for each t and where ιj is the jth column of the J×J identity matrix IJ for j = 1, . . . , J .

In the Monte Carlo study we simulate multiple time series of counts with J = 5. The
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parameter values are set to those considered by Jung, Liesenfeld, and Richard (2011).

The coefficients for the dynamic processes are given by φ0 = φj = 0.98, ση,0 = 0.1 and

ση,j = 0.05 for j = 1, . . . , J . All constants are set to cj = 1.5. The loading coefficients

are given by γ1 = 1, γ2 = 1.2, γ3 = 0.8, γ4 = 1.5 and γ5 = 0.7.

C.2 Likelihood estimation and design of Monte Carlo study

We examine the performances of log-likelihood estimation via the importance sampling

methods that are listed in Table 1 of the main paper. The design of the Monte Carlo

study is as follows. We consider 500 random time series of the state space models that

are discussed above. The choice of 500 simulations is taken to avoid the dependence of

our conclusions on particular trajectories of the simulated states and series. For each

simulated time series, we estimate the log-likelihood function at the true parameters

a hundred times using different common random numbers. Hence each cell in the

presented tables below reflects 50, 000 likelihood evaluations. We report the results for

the different sample sizes n = 1, 000 and n = 5, 000 while we use S = 200 importance

samples for each likelihood evaluation.

The reported statistics are computed by

Bias = 50000−1 ·
∑500

i=1

∑100
j=1

(
log L̂j(yi;ψ)− logL(yi;ψ)

)
,

Variance = 500−1 ·
∑500

i=1 100
−1 ·

∑100
j=1

(
log L̂j(yi;ψ)− logL(yi;ψ)

)2
,

where yi is the ith simulated time series, log L̂j(yi;ψ) is the “true” log-likelihood value,

log L̂j(yi;ψ) is the jth estimate of the log-likelihood function for a particular method

and logL(yi;ψ) = 100−1
∑100

j=1 logL
j(yi;ψ). The true log-likelihood value is unknown

and we approximate it by taking the log of the average of likelihood estimates from the

NAIS method. It is based on the NAIS likelihood estimate from S = 200×100 = 20, 000

importance samples. Hence the approximation error of the true likelihood is negligible.

We compute the mean squared error (MSE) as the sum of the variance and the square

of the bias estimate. The variance and the MSE are reported as a ratios with respect ti

the standard EIS method. Our key summary statistic is the time normalised variance
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ratio of method a against the benchmark method b and it is given by

Variancea/b ×

(
1 +

TimeaI+II − TimebI+II

TimeaII

)
−1

where Variancea/b is the ratio of the Monte Carlo variance for methods a and b and

Timemj is the time length of task j, for j = I, II, I+II, by method m, for m = a, b. We

have excluded TimeaI from the denominator because it is a fixed cost and not relevant

for drawing additional samples.

The number of nodes for the numerical integration calculations is M = 20. We

base the initialisation of each importance sampling method on the local approximation

of SPDK. To reduce the simulation variance for all likelihood evaluations, we use

antithetic variables for location as in Durbin and Koopman (2000), except for the

NAISc methods. In our study, for all models, we have found no evidence of importance

sampling weights that constitute an infinite variance; see the discussions in Koopman,

Shephard, and Creal (2009). Our diagnostic procedure includes the verification of how

sensitive the importance sampling weights are to artificial outliers as in Richard and

Zhang (2007). We have efficiently implemented all methods using MATLAB and C

code. The computer code is available from the authors upon request.

C.3 Monte Carlo results for models with a scalar state

Tables 1 and 2 present the results for two dynamic stochastic model with a scalar state:

stochastic conditional duration and stochastic copula models. The findings are similar

across the stochastic volatility model of the main paper and these models.

C.4 Monte Carlo results for models with multiple states

Table 3 reports the findings for the dynamic factor model for multivariate Poisson

counts. We have implemented the EIS-BF algorithm as proposed in Jung, Liesenfeld,

and Richard (2011). Given that the computer code is more involved for multivariate

models, we have not implemented the NAIS-BF and NAIS-BF-Ctrl method. The

presented results are similar to the results that are reported for the SV model with

k = 2.
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Table 1: Log-likelihood Errors for the Stochastic Conditional Duration

Model.
The table presents the numerical and computational performance of different IS
methods for log-likelihood estimation. We simulate 500 different realisations from
the model. For each of these realisations, we obtain log-likelihood estimates for
100 different sets of random numbers. We estimate the variance associated with
each method as the average sample variance across the 500 realisations. We define
the mean-square error (MSE) as the sum of the variance and the square of the
average bias across the 500 realisations. We show these statistics as ratios with the
standard implementation of the EIS method as the benchmark. The time for step
1 column gives the fixed time cost for obtaining the parameters of the importance
density, while the time for step 2 refers to the computational cost of sampling
from the importance density and calculating the likelihood estimate. The TNVAR
column reports the time normalised variance ratio. We list the methods (with their
acronyms) in Table 1 of the main paper. We specify the stochastic conditional
duration model as: yt ∼ Weibull(λt, ψ = 1.2) with λt = exp(αt) and αt+1 =
0.98αt + ηt where ηt ∼ N(0, σ2

η = 0.0225) for t = 1, . . . , n.

Time Step 1 Time Step 2
n = 1000, S = 200 Variance MSE (×10) (×10) TNVAR
SPDK 14.888 15.034 0.052 0.212 7.039
EIS-BF 1.000 1.000 0.278 0.221 1.000
EIS-JSDK 1.008 1.008 0.284 0.210 0.980
NAIS-BF 0.562 0.561 0.114 0.207 0.302
NAIS-JSDK 0.563 0.562 0.110 0.209 0.302
NAIS-BF-Ctrl 0.378 0.379 0.112 0.222 0.216
NAIS-JSDK-Ctrl 0.379 0.380 0.114 0.214 0.210

Time Step 1 Time Step 2
n = 5000, S = 200 Variance MSE (×10) (×10) TNVAR
SPDK 12.980 21.861 0.200 1.228 5.515
EIS-BF 1.000 1.000 1.766 1.325 1.000
EIS-JSDK 1.012 1.011 1.762 1.208 0.919
NAIS-BF 0.485 0.479 0.644 1.298 0.257
NAIS-JSDK 0.499 0.492 0.629 1.243 0.252
NAIS-BF-Ctrl 0.401 0.398 0.716 1.339 0.226
NAIS-JSDK-Ctrl 0.405 0.402 0.694 1.257 0.212
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Table 2: Log-likelihood Errors for the Stochastic Copula Model.
The table presents the numerical and computational performance of different IS
methods for log-likelihood estimation. We simulate 500 different realisations from
the model. For each of these realisations, we obtain log-likelihood estimates for
100 different sets of random numbers. We estimate the variance associated with
each method as the average sample variance across the 500 realisations. We define
the mean-square error (MSE) as the sum of the variance and the square of the
average bias across the 500 realisations. We show these statistics as ratios with the
standard implementation of the EIS method as the benchmark. The time for step
1 column gives the fixed time cost for obtaining the parameters of the importance
density, while the time for step 2 refers to the computational cost of sampling
from the importance density and calculating the likelihood estimate. The TNVAR
column reports the time normalised variance ratio. We list the methods (with their
acronyms) in Table 1 of the main paper. We specify the stochastic copula model
as: u1t, u2t ∼ Cν=5,Pt

(ut), ρt = (1− exp(−αt)(1+exp(−αt))
−1, αt+1 = 0.98αt+ ηt,

where ηt ∼ N(0, σ2
η = 0.01).

Time Step 1 Time Step 2
n = 1000, S = 200 Variance MSE (×10) (×10) TNVAR
SPDK 10.480 10.484 0.027 0.397 6.485
EIS-BF 1.000 1.000 0.257 0.411 1.000
EIS-JSDK 0.989 0.989 0.285 0.397 1.025
NAIS-BF 0.622 0.622 0.146 0.401 0.477
NAIS-JSDK 0.612 0.612 0.143 0.401 0.467
NAIS-BF-Ctrl 0.385 0.386 0.151 0.419 0.312
NAIS-JSDK-Ctrl 0.388 0.388 0.155 0.408 0.308

Time Step 1 Time Step 2
n = 5000, S = 200 Variance MSE (×10) (×10) TNVAR
SPDK 16.229 16.294 0.110 2.024 9.390
EIS-BF 1.000 1.000 1.516 2.093 1.000
EIS-JSDK 1.001 1.001 1.581 2.046 1.010
NAIS-BF 0.543 0.543 0.856 2.054 0.405
NAIS-JSDK 0.549 0.548 0.808 2.043 0.400
NAIS-BF-Ctrl 0.329 0.330 0.885 2.132 0.258
NAIS-JSDK-Ctrl 0.328 0.329 0.869 2.061 0.247
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Table 3: Log-likelihood Errors for the Dynamic Factor Model for Mul-

tivariate Poisson Counts.
The table presents the numerical and computational performance of
different IS methods for log-likelihood estimation. We simulate 500
different realisations from the model. For each of these realisations, we
obtain log-likelihood estimates for 100 different sets of random numbers.
We estimate the variance associated with each method as the average
sample variance across the 500 realisations. We define the mean-square
error (MSE) as the sum of the variance and the square of the average
bias across the 500 realisations. We show these statistics as ratios with
the standard implementation of the EIS method as the benchmark.
The time for step 1 column gives the fixed time cost for obtaining the
parameters of the importance density (in seconds), while the time for
step 2 refers to the computational cost of sampling from the importance
density and calculating the likelihood estimate. The TNVAR column
reports the time normalised variance ratio. The last column reports the
normalised variance when we ignore the fixed time cost of step 1. We
list the methods (with their acronyms) in Table 1 of the main paper.

Time Time
n = 1000, S = 200 Variance MSE Step 1 Step 2 TNVAR
SPDK 22.268 22.653 0.065 0.118 3.056
EIS-BF 1.000 1.000 0.283 0.195 1.00
EIS-JSDK 0.975 0.975 0.235 0.116 0.182
NAIS-JSDK 0.496 0.496 0.099 0.118 0.072
NAIS-JSDK-Ctrl 0.302 0.302 0.103 0.161 0.061

Time Time
n = 5000, S = 200 Variance MSE Step 1 Step 2 TNVAR
SPDK 16.612 34.246 0.385 0.587 1.915
EIS-BF 1.000 1.000 1.616 1.088 1.000
EIS-JSDK 1.014 1.012 1.210 0.592 0.166
NAIS-JSDK 0.448 0.441 0.755 0.612 0.053
NAIS-JSDK-Ctrl 0.361 0.358 0.757 0.831 0.061
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