
Appendix A Proof of Theorems

Proof of Theorem 1

Proof. Let βSn
be a kn × 1 vector in which Sn entries are nonzero, θ̂ = {θ̂j, j = 1, . . . , kn}

be the estimated sample wavelet coefficient magnitude, and ρkn be the smallest eigenvalue of
Σkn = 1

n
ZT

knZkn . Without loss of generality, we assume the first Sn entries in βSn
are nonzero,

and assume columns of Zkn are standardized such that each column has mean of 0 and standard
deviation of 1, and the first Sn elements of θ are nonzero. By Parseval’s theorem, we have

||η̂n − η||2L2 = ‖ β̂kn − βSn
‖2 +

kn∑
j=Sn+1

β2
j +

Nn∑
j=kn+1

β2
j +

∞∑
j=Nn+1

β2
j . (A.1)

The first term on right hand side of equation (A.1) stands for model estimation error, the second
term is due to thresholding error, the third term is due to screening error, and the fourth term
is due to finite sampling error which depends on how densely we sample the functional predictor.
By assumption (a4) and Theorem 9.5 of Mallat (2008),

∞∑
j=Nn+1

β2
j = o(N−2qn ). (A.2)

By assumption (a5) and Theorem 9.10 of Mallat (2008),

kn∑
j=Sn+1

β2
j +

Nn∑
j=kn+1

β2
j =

Nn∑
j=Sn+1

β2
j = o(S1−2/r

n ). (A.3)

We show the convergence rate of ‖ β̂kn−βSn
‖2 below. Let l(β) = 1/n||Y−ZT

knβ||
2+
∑kn

j=1 λnθ̂
−1
j |βj|,

δ = ||β̂kn − βSn
||, and β̂kn − βSn

= δu with ||u|| = 1. Given equation (4), we have

l(β̂kn)− l(βSn
) = −2δn−1ε∗TZT

knu + δ2n−1uTZT
knZknu +

kn∑
j=1

λnθ̂
−1
j (|β̂j| − |βj|) ≤ 0. (A.4)

We know
∑kn

j=1 λnθ̂
−1
j (|β̂j| − |βj|) ≥

∑
j∈Hn

λnθ̂
−1
j (|β̂j| − |βj|). By reverse triangle inequality and

Cauchy-Schwarz inequality, we have∑
j∈Hn

λnθ̂
−1
j (|β̂j| − |βj|) ≥ −

∑
j∈Hn

λnθ̂
−1
j (|β̂j − βj|) ≥ −δ

√∑
j∈Hn

(λnθ̂
−1
j )2. (A.5)

Combine (A.4) and (A.5), we have

δρkn ≤ δuTΣknu ≤ 2||n−1ZT
Hn
ε∗||+

√∑
j∈Hn

(λnθ̂
−1
j )2. (A.6)

We next show the convergence rate of ||n−1ZT
knε
∗|| in equation (A.6). Given equation (4), a
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constant C, and ξ2i = (
Nn∑

i=kn+1

zijβj)
2,

E(||n−1/2ZT
knε
∗||2) = E(n−1εTZT

knZknε) + n−1ξTZT
knZknξ

≤ σ2tr(Σkn) + C/n

n∑
i=1

ξ2i

≤ σ2kn + 1/n
n∑

i=1

(
Nn∑

j=kn+1

z2ij

)(
Nn∑

j=kn+1

β2
j

)

By assumption (a4), E(||n−1/2ZT
knε
∗||2) = O(kn) + o(k

1−2/r
n ). By Markov’s inequality,

||n−1ZT
Hn
ε∗|| = Op((kn/n)1/2) + op(k

1/2−1/r
n /

√
n). (A.7)

By assumption (a2), we have
√ ∑

j∈Hn

(λnθ̂
−1
j )2 = op(n

−1/2). Combining this with (A.7) and (A.6),

we have

δ = ‖ β̂kn − βSn‖ = Op

(
k
1/2
n

n1/2ρkn

)
. (A.8)

By (A.2), (A.3), and (A.8), this implies

‖ η̂n − η‖ 2
L2 = Op

(
kn
nρ2kn

)
+ o(k1−2/rn ) + o(N−2qn )

Proof of Theorem 2

Proof. Following Johnstone and Lu (2009), we assume, without loss of generality, that wavelet
coefficient population magnitude θ1 ≥ θ2 ≥ · · · ≥ θN > 0. We also assume the coefficient of
variation for each wavelet coefficient is bounded by a constant C0 (i.e., Ch = σh/θh, 0 < Ch <
C1, h = 1, 2, . . . , N), where σ2

h, h = 1, . . . , N is the population variance of wavelet coefficient.
Let γn be a suitably chosen small positive number, and d be a suitably chosen constant. Let
zh ∼ N(µh, σ

2
h), θh = |µh| ∀h, and Z ∼ N(0, 1). For any fixed constant t and l ∈M ,

θ̂h ≤ t for h ≥ k, h 6= l and θ̂l ≥ t⇒ θ̂l ≥ θ̂(k).
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If we let t = θk + γn and θl ≥ d× t with d > 1, we have

P (θ̂l < θ̂(k)) ≤
∑
h≥k

P (θ̂h > t) + P (θ̂l < t) =
∑
h≥k

{
P

(
Z >

√
n(t− θh)

σh

)
+ P

(
Z <

√
n(−t− θh)

σh

)}
+ P

(√
n(−t− θl)

σl
< Z <

√
n(t− θl)
σl

)
=
∑
h≥k

{
P

(
Z >

√
n(t/θh − 1)

σh/θh

)
+ P

(
Z >

√
n(t/θh + 1)

σh/θh

)}
+ P

(
Z >

√
n(1− t/θl)
σl/θl

)
− P

(
Z >

√
n(1 + t/θl)

σl/θl

)
≤
∑
h≥k

{
P

(
Z >

√
n(γn/θk)

C0

)
+ P

(
Z >

√
n(γn/θk + 2)

C0

)}
+ P

(
Z >

√
n(1− 1/d)

C0

)
= (N − k + 1) Φ

(
−
√
nγn/θk
C0

)
+ (N − k + 1) Φ

(
−
√
n(2 + γn/θk)

C0

)
+ Φ

(√
n(1/d− 1)

C0

)
The bound P (FE) ≤ (N − k + 1) Φ

(
−
√
n

C0b

)
+ (N − k + 1) Φ

(
−
√
n(2b+1)
C0b

)
+ Φ

(√
n(1−d)
dC0

)
follows

from γn =
√
log(n)/n, θk = bγn with b > 0, and a suitably chosen constant d > 1.
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