Further Discussion on the Choice of Prior Distributions

October 31, 2019

Here we have a brief discussion on the choice of prior distributions in Section 3.1 of the
main text and more specifically for the radiation transport model in Section 5.2. We will
briefly note some observations of testing using alternative priors for some of the parameters.

The main prior of interest to discuss is the hierarchical prior on the impurity concen-
tration in the blocks. The priors for the parent distribution were chosen to maintain the
standard uniform distribution on calibration parameters used throughout the literature
(Kennedy and O’Hagan, 2001; Higdon et al., 2004, 2008; Linkletter et al., 2006; Goh et al.,
2013). The truncated normal distribution was chosen to maintain this support while pro-
viding a reasonable parametric distribution for the data with few observations. A normal
distribution without the truncation was tested for Section 5.2 of the main text, but be-
cause the stationary Gaussian process emulator is mean-reverting and locally-smooth, the
emulator gave similar predictions just below zero as it did close above, allowing substantial
posterior mass for unphysical, negative impurity concentrations. The other question about
the hierarchical prior is whether to simply fit each brick individually, rather than as drawn
from a parent distribution. Because the parent distribution was of physical interest, it was
important to do so regardless, but it was also valuable to ensure that the hierarchical prior
was not causing pathologies in the model. Figure 1 shows a box plot of posterior samples
for the brick by brick impurity concentrations, equivalent to Figure 7 of the main text but
without using the hierarchical prior. The samples show consistent results to the case with
the hierarchical prior, with slightly more variation in the posterior mean values, lending
support to the robustness of the conclusions.

We also looked at the Gaussian process hyperparameters, 3, k., and k0. The results
were robust to small variation in the integer denominator of the exponential prior. A
reminder that the choice of Exponential(1/4) was chosen due to transformation, which
makes this a uniform prior on the correlation coefficient between emulator responses at
\/m = 1/2 the range of the input parameters. Variations in the denominator represent
varying the distance between emulator responses for which a uniform prior is being places
on the correlation coefficient. Of course, a strong prior on short correlation lengths will
have an effect of increasing the uncertainty in the emulator response, but this would assume
strong knowledge of a shorter correlation length.

Because the application in Section 5.2 of the main text did not use a model discrepancy;,
we did not have a ks to vary. For the application in Section 5.1 of the main text, we
did not vary the relative scale of the prior distributions between k. and ks as the values
were chosen to represent strong prior information as recommended by Brynjarsdoéttir and
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Figure 1: Posterior marginal box plot for the impurity concentration showing each of the ten
bricks without the hierarchical prior. The impurity concentration shows similar posterior
summary statistics as in the case with the hierarchical prior, indicating that the results
were not sensitive to choosing the hierarchical prior.



O’Hagan (2014). Increasing the variance of the discrepancy process would be expected
to increase uncertainty in model calibration parameters, as they discrepancy would be
more flexible to accommodate parameter values that do not fit the data as well. Reducing
the correlation length for the discrepancy would be expected to have similar results. For
the application with discrepancy, the data do not give any evidence for a time-varying
discrepancy, so varied prior distributions would not be expected to have significant effect.
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