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1. Some Definitions 

Here we will give a brief description of some popular circular and spherical probability 

distributions. We also included the definition of circular trimmed mean. 

 

1.1 Circular and Spherical Distributions 

The most popular symmetric unimodal distribution used for modeling circular data is the 

circular normal distribution (a.k.a. von-Mises distribution) which has the probability 

density function (p.d.f)  
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where )(I0   is the modified Bessel function of order zero, the parameters   and   are 

respectively called the mean direction and the concentration parameter. We will denote 

this distribution as    ,CN . Besides circular normal distribution, another popular 

symmetric unimodal distribution used for modeling circular data is the wrapped normal 

distribution obtained by wrapping  2 ,N   on to the circle and having the p.d.f. 
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The parameters   and are respectively called the mean direction and the 

concentration parameter. We will denote this distribution as    ,WN . 

One of the most popular symmetric distributions used for modeling spherical data is the 

von-Mises-Fisher distribution. The random vector X
~

 is said to follow the von-Mises-

Fisher distribution   ,~Mμ  if it has the following p.d.f 
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 2  ,0  and 0 . The parameters μ~  and   are called ‘mean direction’ and 

‘concentration parameter’ respectively. 

 

1.2 The circular trimmed mean 

Suppose   is a circular random variable with p.d.f  f  and 5.00   is fixed. Let  , 

  be two points on the unit circle satisfying 
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 2-1 df  where ),(d1   is the length of 

the arc starting from   and ending at   traversed in the anticlockwise direction. Then 

the  - circular trimmed mean (  -CTM) is defined as 
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2. Proofs of theorems and lemmas 

Proof of Theorem 2.1: Let F  denote the ),(CN   distribution and x denote the point 

mass at x. Also let x0F)1(G  . We note that,   ycosE
x0)F-(1  and 

  xsinsinE 
x0)F-(1  . Using these we get  

         
  yxsinyGW 222  .                                                                         … (2.1) 

Again, an easy computation yields   cFW  .                                                         ... (2.2) 

Now using (2.1) and (2.2) we have  







  2x0  some for cyxsiny:0inf)W( 222** . 

Hence the theorem is established. 

 

Proof of Theorem 2.2: Let F  and x be as in the proof of theorem 2.1. Also let 

xF)1(G   . It is easy to check from the definition of  FW  that    

    )xcoscos)1(()xcos(12)1(GW 222   

and 0)F(W 0  .Then straightforward calculations yield the PBF of W as  

  2x0   x,some for 0 )sin-(1sinx:0inf)W(*
. 

Since  0 )sin-(1sinx  has a solution in )2,0[x   if and only if 
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. Further, the PBP is 
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Hence the theorem is established. 
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Proof of Theorem 3.1: Let F , G  and x be as in the proof of theorem 2.1.  It is 

straightforward to check that   
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and   FW1 . Since 
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have  the LBF of 1W  as 
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be 
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Hence the theorem is established. 

 

Proof of Theorem 3.2: Let F  and x be as in the proof of theorem 2.1. Let G  be as in 

the proof of theorem 2.2. Note that it is straightforward to check that  
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Hence the theorem is established. 

 

Proof of Theorem 4.1: a) Let F  and x  be as in the proof of theorem 2.1. Let 

x0F)1(G  , ),[x  and 5.00  . Then we can write 
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note that since 0F is symmetric about zero we have 21  .  

Case 1: When 21 x   

In this case we have, xsin
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Case 2: When 1x   

In this case we have,       
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Case 3: When 2x   

In this case we have,       
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Combining the above three cases we have 
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Using Lemma 1 and Lemma 2 we get 
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b) Now, from (4.1) we get   1sinx  where    
 sin10 ,
1  has a solution in 

 21,x   if and only if  1||  . We define the following quantities: 

  1),(x:)xsin(sup),(k 211   and   1),(x:)xsin(inf),(k 212   such 

that ),(k),(k 12  . Let |sin|),(k 0 ,11    
and |sin|),(k 0 ,22   . 

Then   1sinx  has a solution in  21,x  if and only if  
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c) Further, the LBP of W satisfies 
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Hence the theorem is established. 

 

Proof of Theorem 4.2: Let F  and x be as in the proof of theorem 2.1.  Further, for 

5.00  let xF)1(G   , ) ,[x  . Then 
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the equation has a solution in x if and only if   .  This yield: 
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Now, when     21 c  xand  cx , we have   01)G(W   . Since W  does 

not involve x, for any , there exist no solution for which     21 c  xand  cx .  

Noting that   C2C2 , we have 
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Hence the theorem is established. 

  

Proof of Theorem 6.1: a) Let F  denote the ),(WN   distribution and x denote the 

point mass at x. Let G  be as in the proof of theorem 2.1. We note that, 

  ycosE
x0)F-(1   

and   xsinsinE
x0)F-(1  . Using these we get  

  yxsinyGW 222  . 

Again, an easy computation yields   cFW  . The rest of the proof is similar to theorem 

2.1. 

b)  Let F  and x be as in the proof of theorem 6.1. Let G  be as in the proof of theorem 

2.2. It is easy to check from the definition of  FW  that    

    )xcoscos)1(()xcos(12)1(GW 222   

and 0)F(W 0  .The rest of the proof is similar to theorem 2.2.
 

 

Proof of Theorem 6.2: a) Let F  and x  be as in the proof of theorem 6.1. Let G  be 

as in the proof of theorem 2.1. It is straightforward to check that 


