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1. Some Definitions 

Here we will give a brief description of some popular circular and spherical probability 

distributions. We also included the definition of circular trimmed mean. 

 

1.1 Circular and Spherical Distributions 

The most popular symmetric unimodal distribution used for modeling circular data is the 

circular normal distribution (a.k.a. von-Mises distribution) which has the probability 

density function (p.d.f)  
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where )(I0   is the modified Bessel function of order zero, the parameters   and   are 

respectively called the mean direction and the concentration parameter. We will denote 

this distribution as    ,CN . Besides circular normal distribution, another popular 

symmetric unimodal distribution used for modeling circular data is the wrapped normal 

distribution obtained by wrapping  2 ,N   on to the circle and having the p.d.f. 
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The parameters   and are respectively called the mean direction and the 

concentration parameter. We will denote this distribution as    ,WN . 

One of the most popular symmetric distributions used for modeling spherical data is the 

von-Mises-Fisher distribution. The random vector X
~

 is said to follow the von-Mises-

Fisher distribution   ,~Mμ  if it has the following p.d.f 
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X ,  Tcos ,sinsin ,cossin~ μ ,  , ,0   

 2  ,0  and 0 . The parameters μ~  and   are called ‘mean direction’ and 

‘concentration parameter’ respectively. 

 

1.2 The circular trimmed mean 

Suppose   is a circular random variable with p.d.f  f  and 5.00   is fixed. Let  , 

  be two points on the unit circle satisfying 

 




β

2-1  df)i(  and  
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 2-1 df  where ),(d1   is the length of 

the arc starting from   and ending at   traversed in the anticlockwise direction. Then 

the  - circular trimmed mean (  -CTM) is defined as 
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  is the trimming proportion. 
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2. Proofs of theorems and lemmas 

Proof of Theorem 2.1: Let F  denote the ),(CN   distribution and x denote the point 

mass at x. Also let x0F)1(G  . We note that,   ycosE
x0)F-(1  and 

  xsinsinE 
x0)F-(1  . Using these we get  

         
  yxsinyGW 222  .                                                                         … (2.1) 

Again, an easy computation yields   cFW  .                                                         ... (2.2) 

Now using (2.1) and (2.2) we have  







  2x0  some for cyxsiny:0inf)W( 222** . 

Hence the theorem is established. 

 

Proof of Theorem 2.2: Let F  and x be as in the proof of theorem 2.1. Also let 

xF)1(G   . It is easy to check from the definition of  FW  that    

    )xcoscos)1(()xcos(12)1(GW 222   

and 0)F(W 0  .Then straightforward calculations yield the PBF of W as  

  2x0   x,some for 0 )sin-(1sinx:0inf)W(*
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Since  0 )sin-(1sinx  has a solution in )2,0[x   if and only if 
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Hence the theorem is established. 
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Proof of Theorem 3.1: Let F , G  and x be as in the proof of theorem 2.1.  It is 

straightforward to check that   
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Hence the theorem is established. 

 

Proof of Theorem 3.2: Let F  and x be as in the proof of theorem 2.1. Let G  be as in 

the proof of theorem 2.2. Note that it is straightforward to check that  
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Hence the theorem is established. 

 

Proof of Theorem 4.1: a) Let F  and x  be as in the proof of theorem 2.1. Let 

x0F)1(G  , ),[x  and 5.00  . Then we can write 
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Combining the above three cases we have 

 

 

 

 

 

 .  x,                   
cosE

sinE
arctan

 x,                 
cosE

~

sinE
~

arctan

x , 
xcos)1(

xsintan)1(
arctan

)G(W

2
F,

F,*

1

F,

F,*

21
0 ,

0,0 ,*

0

0

0

0




























































































 

Using Lemma 1 and Lemma 2 we get 
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b) Now, from (4.1) we get   1sinx  where    
 sin10 ,
1  has a solution in 

 21,x   if and only if  1||  . We define the following quantities: 

  1),(x:)xsin(sup),(k 211   and   1),(x:)xsin(inf),(k 212   such 

that ),(k),(k 12  . Let |sin|),(k 0 ,11    
and |sin|),(k 0 ,22   . 
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Hence the theorem is established. 

 

Proof of Theorem 4.2: Let F  and x be as in the proof of theorem 2.1.  Further, for 
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where  
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the equation has a solution in x if and only if   .  This yield: 

     
  
       .0  if   1 ,min  ,0max1 ,min  ,0max

0  and  0 if   0 ,,max ,1min

0  if  1 ,min  ,0max1 ,min  ,0max












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Now, when     21 c  xand  cx , we have   01)G(W   . Since W  does 

not involve x, for any , there exist no solution for which     21 c  xand  cx .  

Noting that   C2C2 , we have 

 
  

  
  
























. C2if1 ,min  ,0max

 if,0,max  ,1min

C2if1 ,min  ,0max

W*
,

 

Hence the theorem is established. 

  

Proof of Theorem 6.1: a) Let F  denote the ),(WN   distribution and x denote the 

point mass at x. Let G  be as in the proof of theorem 2.1. We note that, 

  ycosE
x0)F-(1   

and   xsinsinE
x0)F-(1  . Using these we get  

  yxsinyGW 222  . 

Again, an easy computation yields   cFW  . The rest of the proof is similar to theorem 

2.1. 

b)  Let F  and x be as in the proof of theorem 6.1. Let G  be as in the proof of theorem 

2.2. It is easy to check from the definition of  FW  that    

    )xcoscos)1(()xcos(12)1(GW 222   

and 0)F(W 0  .The rest of the proof is similar to theorem 2.2.
 

 

Proof of Theorem 6.2: a) Let F  and x  be as in the proof of theorem 6.1. Let G  be 

as in the proof of theorem 2.1. It is straightforward to check that 


