
Vignette for QPdecon: An R Package for Density
Deconvolution with Additive Measurement Errors

using Quadratic Programming

Ran Yang, Daniel Apley∗, Jeremy Staum, David Ruppert†

September 26, 2018

1 Introduction
The QPdecon package illustrated in this vignette estimates the probability density function (pdf)
fX(·) of a random variable (r.v.) X of interest when only a random sample of noisy observations
{Y1, · · · , Yn} are available. The underlying model is Yi = Xi + Zi, i ∈ {1, 2, · · · , n}, where
the Z ′is are mean-zero observation errors and are independent of the X ′is. As is typical in the
extensive literature on density estimation with noisy observations, (e.g., Carroll and Hall [1988],
Stefanski [1990], Fan [1991], Diggle and Hall [1993], Delaigle and Gijbels [2004], Hall and
Meister [2007], Meister [2009]), the pdf fZ of Z is assumed to be known.

I changed the references somewhat in the first two paragraphs. As far as I am aware, Sil-
verman, Parzen, and Rosenblatt only discuss density estimation with noise-free observations. I
added a few more references on kernel deconvolution. –DR

For the additive measurement error model, the pdf fY of Y is the convolution

fY (y) = (fX ∗ fZ) (y) =
∫ ∞
−∞

fZ(y − x)fX(x)dx. (1)

This convolution in the spatial domain corresponds to multiplication φY (ω) = φX(ω) · φZ(ω)
in the Fourier domain, where φY denotes the Fourier transform of fY (likewise for φZ and φX),
and ω denotes frequency. In light of this, one classic and popular method is the Fourier-based
kernel deconvolution (KD) (e.g., Carroll and Hall [1988], Stefanski and Carroll [1990], Diggle
and Hall [1993]). One estimates fX(·) as the inverse Fourier transform of φK(hω)φ̂Y (ω)/φZ(ω)
(the overscore symbol ·̂ denotes an estimate). The additional term φK(hω) is a frequency-domain

∗Corresponding author. Department of Industrial Engineering & Management Sciences, Northwestern Univer-
sity, Evanston, Illinois,60208-3119
†Department of Statistical Science and School of Operations Research and Information Engineering, Cornell

University, Ithaca, NY 14853-3801

1

kernel weighting function that gives less weight to higher frequency values in the Fourier inver-
sion integral to avoid numerical conditioning problems, and h here is the bandwidth parameter
for kernel smoothing. This approach is referred to as KD (kernel deconvolution), because it is
equivalent to kernel density estimation in the spatial domain, where the spatial domain kernel is
the inverse Fourier transform of φK(hω)/φZ(ω), instead of some standard (e.g., Gaussian) ker-
nel. Thus, KD is related to kernel density estimation for data observed without error [Rosenblatt,
1956, Parzen, 1962, Silverman, 1986].

Although KD methods have a sound theoretical foundation with well-understood asymptotic
properties, their performance is sensitive to the choice of the bandwidth parameter which dictates
the amount of smoothing [Fan, 1991, Barry and Diggle, 1995, Delaigle and Gijbels, 2004], and it
may be difficult to achieve a desirable balance between over- and under-smoothing, as illustrated
in the example below. Moreover, methods having desirable asymptotic results do not necessarily
perform well in typical finite-sample situations. Other existing methodologies for density esti-
mation include spline-based smoothing method by Green and Silverman [1993]. The smoothing
splines methods are similar to KD in that they correspond approximately to smoothing by a ker-
nel method with bandwidth depending locally rather than globally on the design points. Hence,
such spline-based methods can suffer from similar issues with KD methods.

Fig. 1 illustrates the performance of KD methods with two types of kernels for a gamma
example in which X ∼ Gamma(5, 1), Z ∼ N(0, σ2

Z = 3.2), and n = 5000. A histogram of the
observed data {Y1, · · · , Yn}, along with the true density fX(·), are shown in each panel. Panel
(a) also shows the KD estimate f̂X with rectangular frequency domain kernel φK(ω) = I[−1,1](ω)
for bandwidth parameter h ∈ {0.87, 1.0, 1.16}. The salient characteristic here is the pronounced
oscillation on the tails of f̂X . This oscillation can be reduced by decreasing h, but the downside
of this is oversmoothing of f̂X . Even the largest h = 1.16 has not eliminated the tail oscillation,
and yet the peak of fX(·) is already being oversmoothed. Panel (b) shows similar results, but
for triweight kernel φK(ω) = (1 − ω2)3I[−1,1](ω). The same problematic tradeoff regarding the
choice of bandwidth parameter is evident. If one chooses a small enough bandwidth to avoid
tail oscillation, this causes oversmoothing; if one chooses a large enough bandwidth to avoid
oversmoothing, this causes tail oscillation. There may exist no value of bandwidth parameter
that mitigates the tail oscillation without oversmoothing peaks.

Another undesirable characteristic of the KD method is that f̂X may be negative, as can be
seen in Fig. 1. One can easily add a postprocessing adjustment of f̂X so that it is nonnegative and
integrates to one, but this generally does not improve overall measures of quality of the estimator.
As will be demonstrate later, it is much more effective to incorporate these constraints directly
into the estimation process, as done in the QPdecon package. Moreover, it is even more difficult
to incorporate more complex shape constraints (e.g., tail monotonicity or convexity, unimodality,
etc.) into the KD method. In contrast, it is straightforward to incorporate known shape constraints
into the QPdecon approach.

Motivated by the preceding, Yang et al. [2018] developed a quadratic programming (QP) op-
timization approach for density deconvolution and the R package QPdecon to implement it. This
vignette gives an overview of the approach and describes how to use the QPdecon package. See
Yang et al. [2018] for details of the QP approach and extensive performance comparisons demon-
strating much better performance than existing methods. In QPdecon, the estimator f̂X is chosen
to minimize a quadratic objective function that measures the difference between the convolution

2

f̂X ∗ fZ and an empirical density estimator f̂Y . A variety of shape constraints are translated
into linear constraints and can be easily incorporated into the QP formulation. The QPdecon
objective function also include a quadratic regularization penalty for the purpose of ensuring the
most appropriate level of smoothing. To select the regularization parameter (analogous to the
KD’s bandwidth), QPdecon includes a simple and computationally efficient method based on a
concept similar to Stein’s unbiased risk estimator (SURE) [Mallows, 1973, Stein, 1981, Efron,
1986]. QPdecon also includes a simple graphical method that serves as a check on the selected
regularization parameter, and Yang et al. [2018] demonstrated that it is effective at preventing
poor estimation results in the small proportion of cases where the SURE-like method selects too
little regularization.

The examples in Yang et al. [2018] indicate that, even without shape constraints, the QP
estimator performs substantially better than the KD method. With shape constraints (when appli-
cable), the performance improvement is even larger. Even when the error density fZ is Gaussian,
which is notoriously difficult to deconvolve because of its smoothness [Carroll and Hall, 1988,
Stefanski, 1990, Stefanski and Carroll, 1990, Fan, 1992, Wang and Wang, 2011], the QP estima-
tor can achieve reasonable performance.

The remainder of this vignette is organized as follows. Section 2 describes the quadratic
programming (QP) objective function for the density deconvolution problem (Section 2.1) and
how to represent various shape constraints as linear constraints in the QP optimization (Section
2.2). Section 3 describes the SURE-like method for selecting the regularization parameter and
method of regularization (Section 3.1) and then describes the simple, yet effective graphical check
on the selected value (Section 3.2). Mixed throughout the vignette, we demonstrate how to use
the QPdecon package to select the regularization parameter and obtain the density deconvolution
estimator.

2 QP approach for density deconvolution

2.1 Basic QP Problem Formulation
The QP approach works with a version of the continuous convolution in Eq. (1) discretized over
a grid of equally spaced points x = {xj : 1 ≤ j ≤ K} for the support of both fX(·) and fY (·).
Here x1 = min{Yi : 1 ≤ i ≤ n} and xK = max{Yi : 1 ≤ i ≤ n}. More specifically, defining
δ = (xK − x1)/(K − 1), one can use the discrete approximation

fX(x) ∼= fX(xj) ≡ fX,j, if x ∈ [xj − δ/2, xj + δ/2), for 1 ≤ j ≤ K,

and similarly for fY (·), as illustrated in Fig. 2. Let the vectors fX = [fX,1, fX,2, · · · , fX,K]T and
fY = [fY,1, fY,2, · · · , fY,K]T represent the pdfs fX(·) and fY (·), respectively. As an estimate of
fY , the histogram of {Y1, · · · , Yn} with bins centered at the same set of support points x is used.
That is, the estimate f̂Y,j of fY,j is the histogram bin height at xj . The discretized estimator f̂X
of the pdf fX(·) will also be represented as a K-length vector. It should be noted that the QP
approach inherently produces a smoothed estimate f̂X , so that further smoothing is unnecessary.
Guidelines for selecting K are discussed in Section 3.

3

x

f X

−5 0 5 10 15

0.
00

0.
05

0.
10

0.
15

0.
20

fX

f̂X : (h = 0.87)
f̂X : (h = 1)
f̂X : (h = 1.16)

(a)

x

f X

0 5 10 15 20

0.
00

0.
05

0.
10

0.
15

0.
20

fX

f̂X : (h = 0.72)
f̂X : (h = 0.8)
f̂X : (h = 1.12)

(b)

Figure 1: The histogram is of {Y1, · · · , Yn} along with KD results for the Gamma(5, 1) example
for various levels of smoothing bandwidth h using (a) a rectangular kernel φK(ω) = I[−1,1](ω)
and (b) a triweight kernel φK(ω) = (1−ω2)3I[−1,1](ω). Small h corresponds to undersmoothing,
and large h corresponds to oversmoothing.

4

● ● ● ● ● ● ●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●
● ● ● ● ● ● ● ● ● ●

x1 … x5 … xj … xKx1 … x5 … xj … xKx1 … x5 … xj … xKx1 … x5 … xj … xKx1 … x5 … xj … xK

fY1
… fY5

fYj

fYK

Figure 2: Illustration of the discrete approximation of fX and the notation. The black solid curve
is the density of fX ; the black dots are the discretized approximation of fX ; and the black crosses
are the x-locations for the discretization.

The discretized version of Eq. (1) can be written as

fY ∼= CfX ⇐⇒

 fY,1...
fY,K

 ∼= δ

 fZ(x1 − x1) · · · fZ(x1 − xK)
...

fZ(xK − x1) · · · fZ(xK − xK)


 fX,1...
fX,K

 , (2)

where the elements of the convolution matrix C are determined from the noise distribution, which
is assumed known. At first glance, one may be tempted to use the estimate f̂X = C−1f̂Y , which
is an exact solution to Eq. (2) with fX and fY replaced by their estimates. However, as is well
known in the deconvolution literature, C is typically (for typical noise distributions) so poorly
conditioned that C−1f̂Y is an unusable estimator subject to wild high-frequency oscillations.

Noting that C−1f̂Y is the solution to f̂X = argminfX
‖f̂Y − CfX‖2, this suggests using the

estimator
f̂X = argminfX

‖f̂Y −CfX‖2 + λQ(fX), (3)

where Q(fX) is a regularization term that penalizes an fX that is poorly behaved in some respect,
and λ is a regularization parameter to be selected based on the data. For example, penalizing
a large second derivative of fX(·) can be achieved by using Q(fX) = ‖D2fX‖2, where D2 is
an appropriately defined second-order difference matrix operator, which is referred as second
derivative regularization. Another option is to use Q(fX) = ‖fX − f̂ reg‖2 where f̂ reg is some
easily-determined and well-behaved approximation to fX . For example, one can take f̂ reg to be a
Gaussian distribution with mean µ̂Y and variance σ̂2

Y −σ2
Z , where µ̂Y and σ̂2

Y are the sample mean
and variance of {Y1, · · · , Yn}. We refer to this as Gaussian regularization. In simulation studies,
overall the two regularization approaches performed comparably, with one method working better
for some examples, and vice-versa for other examples.

Because all pdfs integrate to one and are nonnegative, it makes sense to incorporate this

5

knowledge into the estimation of fX by including constraints in the QP formulation:

f̂X = argminfX
‖f̂Y −CfX‖2 + λQ(fX)

s.t. δ1T fX = 1

fX ≥ 0, (4)

where 1 is a column vector of ones, and fX ≥ 0 means that all elements of fX are nonnegative..

2.2 Additional Shape Constraints
This section discusses a number of common features of density functions that can be translated
into linear constraints on the solution, fX , to the QP. (Although linear on fX , these constraints
are nonlinear on the estimated density fX .) It is intuitively reasonable to suppose that including
any such “prior” knowledge we may have regarding fX should improve the estimation.

Tail monotonicity . Many pdfs have nonincreasing right tails and/or nondecreasing left tails.
Suppose one knows that fX(x) is nonincreasing for x ≥ xm for some specified xm ∈ x. This
can be handled by incorporating additional inequality constraints into the QP formulation (4), as
follows.

f̂X = argminfX
‖f̂Y −CfX‖2 + λQ(fX)

s.t. δ1T fX = 1

fX ≥ 0

AmfX ≥ 0,

where

Am =


0 · · · 0 1 −1 0 0 · · · 0
0 · · · 0 0 1 −1 0 · · · 0
...

...
0 · · · 0 · · · 0 1 −1 0
0 · · · 0 0 · · · 0 0 1 −1

 ,
and the first non-zero column of Am corresponds to xm. A nondecreasing left tail can be handled
in a similar manner, by augmenting Am with additional rows.

Tail convexity . Many pdfs also have one or both tails that are convex. Suppose one knows
that fX(x) is convex for x ≥ xc for some specified xc ∈ x. This can be handled by adding the
inequality constraints AcfX ≥ 0, where

Ac =


0 · · · 0 1 −2 1 0 0 · · · 0
0 · · · 0 0 1 −2 1 0 · · · 0
...

...
0 · · · 0 · · · 0 1 −2 1 0
0 · · · 0 0 · · · 0 0 1 −2 1

 ,

and the first non-zero column of Ac corresponds to the location of xc ∈ x. A convex left tail can
be handled similarly.

6

Unimodality . If we know the pdf is unimodal with mode at known location xu ∈ x, this is
equivalent to a nonincreasing monotonicity constraint for x ≥ xu and a nondecreasing mono-
tonicity constraint for x ≤ xu. In analogy with the form of the monotonicity constraint given
earlier, this can be handled by adding the inequality constraints AufX ≥ 0, where

Au =



−1 1 0 · · · · · · 0

0
.

... . . . −1 1 0 · · · 0

0 · · · 0 1 −1 . . . 0
... 0
0 · · · 0 1 −1


,

and the row of Au in which the order of the elements transitions from {−1, 1} to {1,−1} corre-
sponds to the mode location xu. The preceding is relevant when the mode location xu is known
in advance, which generally will not be the case. For an unknown mode location, one can add xu

as an additional decision variable and solve K separate QPs, each with a different unimodality
constraint corresponding to each candidate xu ∈ x. The value of xu resulting in the smallest QP
objective function value estimates the mode location.

Support constraints . If there is information on the support of fX(x), e.g., that fX(x) = 0
for x < 0, this can be easily taken into account. As an example, suppose that X ≥ 0 is the
concentration of a trace impurity in a chemical production process, and Y is a noisy measurement
of X that can assume negative values, even though X is nonnegative. In situations like this, one
can improve the estimate f̂X by using the information that fX(x) = 0 over certain regions,
even though fY (x) > 0 over these regions. Supposing one knows that the support of fX(x)
lies within the interval [xa, xb] for some specified x1 ≤ xa < xb ≤ xK , one could solve (4)
with the additional constraints that fX,j = 0 for j < a and j > b. In an equivalent but more
computationally efficient formulation, one could simply replace the K-dimensional fX in (4) by
the reduced (b − a + 1)-dimensional counterpart [fX,a, fX,(a+1), · · · , fX,b]T and also replace the
K ×K matrix C by its K × (b− a+ 1) counterpart comprised of columns {a, a+ 1, · · · , b} of
C.

2.3 Illustration of the QPdecon Package.
We now demonstrate how to use QPdecon to obtain the density estimator of X when it is cor-
rupted with additive noise Z. QPdecon uses the R package quadprog [Turlach and Weingessel,
2015] as the solver for quadratic programming problems. The integrate-to-one and nonnegativity
constraints are always recommended (as in (4)), while other constraints like monotonicity or con-
vexity over specified tail regions can also be included if appropriate. We illustrate the package
with the data generated in the following example.

Generate observed data Y as a gamma X plus a normal Z
n <- 5000
X <- rgamma(n,5,1)
Z <- rnorm(n,0,sd=1.8)
Y <- X+Z # the observed sample of data

7

The QPdecon(...) function is the main function in the QPdecon package and is used to
obtain the QP pdf estimator of fX . The usage is

QPdecon(Y,K,f_Z,lambda,reg="2Deriv",...)

The input arguments to the function are the observed data Y, number of histogram bins K,
the noise density f Z, the regularization parameter lambda, and the method of regularization
(either 2Deriv or Gauss). K is also the number of discretized points representing fX . For
zero-mean Gaussian Z, f Z should be set equal to the standard deviation of Z. For any other
noise density, f Z should be a user-defined function that takes a scalar input argument z and
returns the noise density, fZ(z), at z. The default regularization method is reg="2Deriv",
which uses second derivative regularization. As mentioned previously, if reg="Gauss", then
the minimum L2 distance to a Gaussian density is used for regularization; see Yang et al. [2018].
Section 3 discusses the choices of K and lambda.

In the following example, we set lambda below to a prespecified value, 0.011. Also, we
could have simply set f_Z equal to 1.8, but instead we illustrate the more general case where
f_Z is set equal to a function.

f_Z <- function(z){dnorm(z,mean=0,sd=1.8)} # specify the noise pdf
K <- 200 # desired number of discrete point in f_X
Obtain QP estimator
L <- QPdecon(Y=Y,K=K,f_Z=f_Z,lambda=0.011,reg="2Deriv",integr=TRUE,

nonneg=TRUE)
Returned value of QPdecon()
names(L)

[1] "x" "f_X" "f_Y" "lambda" "reg" "mymode"

In the output object of the QPdecon(...), x is a K-length vector of discretized values
that is the support of the QP density estimator; f X is the K-vector containing the QP-estimate
of the density of X at the values in x; f Y is the K-vector containing the empirical density
of random variable Y (taken to be the histogram bin heights at the same values in x, using K
bins corresponding to x); lambda and reg are the regularization parameter value and regu-
larization method used in the QP method, respectively. The last object mymode returns the
estimated mode location when the argument of unimod is set TRUE (mymode="N/A" when
unimod=FALSE).

As discussed in Section 2.2, one can specify additional shape constraints to help improve
the QP estimator. Constraints are added by specifying the corresponding arguments in the
QPdecon(...) function, as in the example below.

The R code below generates Fig. 3, in which the red solid curve corresponds to the QP pdf
estimator f X, the black dashed curve corresponds to the true pdf fX , and the histogram is f Y.
(Using histo=TRUE in plot.QPdecon(...) will plot this histogram, along with f X). We
decreased the sample size to 500 to better illustrate the potential improvements in the estimate
due to constraints. We increased the bandwidth because of the smaller sample size. With the
plot.QPdecon(L, histo) function in QPdecon, we can plot the QP estimator obtained
from the QPdecon(...) function. Since we know the true pdf fX for this illustrative example,

8

we can assess the performance of the QP pdf estimator by comparing with the Gamma(5, 1)
density curve.

The four panels of Fig. 3 shows the pdf estimator with various combinations of constraints.
The unimodality constraint is imposed by unimod=TRUE. In that case, the dashed vertical
line indicates the mode location given by mymode, which is estimated automatically by the
QPdecon(...) function. Specifying support=c(0,20) constraints the support to be
(0,20). The upper bound on the support has no effect in this example, but constraining the
support to be nonnegative improves the estimator; without that constraint f̂(x) > 0 for some
x < 0. Specifying monotone=c(2,8) constrains the estimated density to be monotone below
2 and monotone above 8. In this case, the monotonicity constraints have the same effect as the
unimodality constraint, but of course that will not happen in other examples.

library(QPdecon)
set.seed(8384)
n <-500
X <- rgamma(n,5,1)
Z <- rnorm(n,0,sd=1.8)
Y <- X+Z # the observed sample of data
Pdf estimator with only the nonnegativity
and integrate-to-one constraints
L1 <- QPdecon(Y=Y,K=200,f_Z=1.8,lambda=0.02,reg="2Deriv",integr=TRUE,

nonneg=TRUE)
Pdf estimator with additional unimodality constraint
L2 <- QPdecon(Y=Y,K=200,f_Z=1.8,lambda=0.02,reg="2Deriv",integr=TRUE,

nonneg=TRUE,unimod=TRUE)
Pdf estimator with additional unimodality
and support constraints
L3 <- QPdecon(Y=Y,K=200,f_Z=1.8,lambda=0.02,reg="2Deriv",integr=TRUE,

nonneg=TRUE,unimod=TRUE,support=c(0,20))
Pdf estimator with additional monotonicity
and support constraints
L4 <- QPdecon(Y=Y,K=200,f_Z=1.8,lambda=0.02,reg="2Deriv",integr=TRUE,

nonneg=TRUE,support=c(0,20),monotone=c(2,8))

par(mfrow=c(2,2))
plot(L1,histo=TRUE,main="No additional constraints")
lines(L1$x,dgamma(L1$x,5,1),lwd=1.5,lty=2)
plot(L2,histo=TRUE,main="Unimodality constraint")
lines(L2$x,dgamma(L2$x,5,1),lwd=1.5,lty=2)
abline(v=L2$mymode,lty=2,lwd=1.5)
plot(L3,histo=TRUE,main="Unimodality and support constraints")
lines(L3$x,dgamma(L3$x,5,1),lwd=1.5,lty=2)
abline(v=L3$mymode,lty=2,lwd=1.5)
plot(L4,histo=TRUE,main="Monotonicity and support constraints")
lines(L4$x,dgamma(L4$x,5,1),lwd=1.5,lty=2)

9

0 5 10 15

0.
00

0.
10

0.
20

No additional constraints

x

f X^
(x

)

f̂X : λ = 0.02

0 5 10 15

0.
00

0.
10

0.
20

Unimodality constraint

x

f X^
(x

)

f̂X : λ = 0.02

0 5 10 15

0.
00

0.
10

0.
20

Unimodality and support constraints

x

f X^
(x

)

f̂X : λ = 0.02

0 5 10 15

0.
00

0.
10

0.
20

Monotonicity and support constraints

x

f X^
(x

)

f̂X : λ = 0.02

Figure 3: QP pdf estimators using various combinations of constraints added to the nonnegativity
and integrate-to-one constraints. Each panel contains a histogram of the data (gray), the true pdf
(black, dashed), and the QP estimator (red ,solid). The bandwidth λ is 0.02 in each case. When
the unimodality constraint is imposed, a dashed vertical line is located at the estimated mode.

Top, left: No additional constraints.
Top, right: Unimodality constraint.
Bottom, left: Unimodality constraint and support constrained to be (0,20).
Bottom, right: Density constrained to be monotone on (0,2) and (8,∞), and support constrained
to be (0,20).

3 Selection of the Regularization Parameter and Method
To use QPdecon, one must select K, λ, and Q(fX) (either Gaussian or second derivative regu-
larization).

We have found no adverse consequences to using a large K, other than an increase in com-
putational expense. This is not surprising since the regularization parameter is λ, not K. Figure 4
shows that computation time increases rapidly withK. In that figure, the time to compute all four
estimates in Figure 3 increases from 0.546 to 36.945 seconds as K increases from 100 to 400.
Moreover, the estimated densities are virtually the same for K = 100, 200, 300, and 400. This
can be seen in Figure 5 which contains estimated densities with the nonnegativity and integrate-
to-one constraints for K = 100, 200, 300, and 400.

The rule-of-thumb that Yang et al. [2018] used is K ≈ 3
√
n. That is, selecting K roughly

three times the common K ≈
√
n rule-of-thumb used with histograms. In Yang et al. [2018], n

was large. If n is small, this choice of K might be too low, so we recommendK = min(100, 3
√
n).

For both λ and the regularization method, our approach uses Stein’s Unbiased Risk Estimate

10

●

●

●

●

100 150 200 250 300 350 400

0
10

20
30

K (number of bins)

tim
e

(s
ec

)

Figure 4: Computation times in seconds to compute all four estimates in Figure 3 with K = 100,
200, 300, and 400.

(SURE) method (Stein [1981]); see Section 3.1.
Occasionally, SURE selects λ so small that the density estimate is noticeably undersmoothed.

In Section 3.2, we describe a graphical method, the “scree plot,” that can select λwhen the SURE
method fails. The scree plot can also be used as a stand-alone method if one prefers not to use
the SURE method.

3.1 A SURE Criterion for Selecting the Regularization Parameter and
Method of Regularization

Let f̂Y denote the histogram of Y for the “training” data {Y1, · · · , Yn}, and let f̂
0

Y denote the same
for hypothetical new “test” sample of n observations of Y drawn from the same distribution but
independent of the training data. Let f̂X,λ denote the estimate of fX from the training data with
regularization parameter λ.

The SURE method in Yang et al. [2018] minimizes an estimate E{‖f̂
0

Y − Cf̂X,λ‖2}. To se-

lection the regularization method, the estimate of E{‖f̂
0

Y − Cf̂X,λ‖2} is minimized over both λ
and the regularization method.

3.2 A Graphical Scree-plot Approach for Selecting the Regularization Pa-
rameter

Yang et al. [2018] found in the numerous examples that the SURE choice of λ can be much too
small on a relatively small percentage of Monte Carlo (MC) replicates. This problem is illustrated
in Fig. 6 using 8,000 replicates of the Gamma(5, 1) example in Fig. 1. For all replicates, f̂X was

11

0 5 10 15

0.
00

0.
10

0.
20

K=100

x

f X^
(x

)

f̂X : λ = 0.02

0 5 10 15

0.
00

0.
10

0.
20

K=200

x

f X^
(x

)

f̂X : λ = 0.02

0 5 10 15

0.
00

0.
10

0.
20

K=300

x

f X^
(x

)

f̂X : λ = 0.02

0 5 10 15

0.
00

0.
10

0.
20

K=400

x

f X^
(x

)

f̂X : λ = 0.02

Figure 5: QP pdf estimators using the nonnegativity and integrate-to-one constraints. K = 100,
200, 300, and 400. Notice that, over this range of K, the choice of K has no noticeable effect on
the estimated density.

estimated using the QP method with only the two universal shape constraints of integrate-to-one
and nonnegativity.

Fig. 6a plots the estimation error measure

L1(f̂X , fX) =

∫
|f̂X(x)− fX(x)|dx

against log10(λSURE). One can observe that 9.4% of replications have L1 error more than twice
the median L1 error (the median is 0.089), and about 5.7% have error more than three times the
median. The QP estimator in Fig. 6b corresponds to one of the occasional replicates for which
λSURE is extremely underestimated, and its L1 error is represented by the open red diamond
in Fig. 6a. In comparison, Fig. 6c shows a much-improved estimation result using a corrected
λ = 0.011 (corrected via the scree plot method, described below) for the data from the same
replicate in Fig. 6b, and the L1 error of the improved result is represented by the solid green
diamond in Fig. 6a. Notice that the L1 error is reduced from 1.05 to 0.19, a level that is far below
the level for the extreme case and much more consistent with typical cases (twice the median L1

error).
The corrected λ = 0.011 was obtained by inspection of the scree plot in Fig. 7. The screen

plot is a simple, yet effective, graphical method for selecting an appropriate regularization pa-
rameter and avoiding the occasional poor pdf estimates when the SURE-like method selects λ
too small. As illustrated in Fig. 7, the scree plot is a plot of Q(f̂X) versus λ, and one looks for
the elbow in the plot. The scree-plot choice for λ is the smallest value of λ that is comfortably to

12

−3.5 −3.0 −2.5 −2.0 −1.5 −1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

log10(λSURE)

L
1

●
●

● ●

●
●

●

●

●

●

●

●

● ●

●

●

● ●
●●

●

●

●

●
●

● ●●

●

●●

●

●

● ●
●

● ●

●
●

●

●

●

●

●
●

●

●

●

● ● ●

●
●

●●

●

● ●

●

●

●
●

●●

●

●

● ●

●

●

●

●
●

●

●
●

●

●

●

●

●●● ●

●

●

●

●

●

●

●
●●

●

●
●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●●● ●

●●

●
●

●

●

●

●
● ●

●

●

●●

●●

●

●

●

●

●
●

●

●

●

●

●
●●

●

●
●●

●●
●

● ●
●

●

●

●

●

●

●
●

●

●

●

●
● ●

● ●

●
●

●
●

●
●

●
●

●

●

●

●

●

●
●

●
●

●●

●

●

●

●

● ● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
● ●●

●●

●

●
●

●● ●●
●

●

●

●

●
●

●
●

●

●

●
●

●
● ●

● ●

●

●

●
●

●
●

●

●●

●

●
●

●

●

●
●

●

●
●

●

●

●

●●
●

●

●

●

●●

●

●
●

●

●

●

●

● ●
●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

●

●●
●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●
●

●
● ●

●

●

● ●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●
●● ●

●

●

●

●
●

●
●

●

●

●●

●

●
●●

●●

●

●

●

●

●
●

●
● ● ●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●
●

●●●
●●

●

●
●

●
●

●

●

●

●

●

● ●

●

●

●

● ●

●

●

●

●

●

●

●●
●

●

●

●●

● ●

●

●
● ●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●●
●

●
● ●

●
●

●

● ●

●

●

●

●

●

●

●

●
● ●

●

●

●

●
●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●
●

●

●

●

●

●
●●

●

●

● ●
●

●●●

●

● ●
●

●

● ●

●

●●●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●
●

●

●
●

●

●

●●

●

●

●
●

●

● ●

●

●

● ●

●

●

●

●

●●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●●

●
●

●

●

●

●● ●●

●

●

●

●

●

●

●
●

●●

●

●
● ●●

●

● ●

● ●

●

●

●
●

● ●
●

●

●

●

●
●

●

●
● ●

●

●

●
●

●

●

●●

●

●
●

●

●

●

●

● ●●

●
●

●

●
●●

●

●

●
●

●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

●
●

●

●

●

●
●

●

● ●●

●●●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●
●●

●

●

●

●

●

●● ●
●

●●
●

●

●

●

●

●

●●

●

● ●
●

●
●●

●

●

●
●

●●

●
●

●

●

●

●●
●

●

● ●
●

●
●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●
●

●

●

●●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●
●

●

●

●

●

●
●

●

●

●
●●

●

●

● ●

●

●

●●
●

●

●

●

●

●
●

●

●

● ●

●

●

●● ●● ●

●

●

●

●

●

●

● ●
●●

●

●

●

●

●

●

● ●

●●

●

●

●

●

●

●
●

●

●

●

●

●

● ●● ●
●

●●

●
●

●

●

●

●
●

●
●

●●

●

●

●

●
●

●

●

●
● ●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●
●

●

●

●
●

●

●

●●

●
●

●

●

●

●
●

●

●
●●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●
●

●

●
●

●
●

●

●
●

●

●

●

●

●

●
● ●

●● ●

●●

●
●

●

●

●
● ●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●
●●

●

●

●

●● ●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●
●

●

●

●

● ●

●●

●
●

● ●

●

●

● ● ●
●

●
●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●
● ●●

●

●

●

●

●●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●● ●

●
●

●

●●
●

●

●

●

●

●●

●
●

●

●
●

●

●

● ●●
●

●

●
●

● ●●

●
●

●

●
●●

●

●

●

●

●

●●

●●

●

●

●
●

●
●●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

● ●
●

●

●
●

●

● ●●

●
●●

●

●

●
●

●●

●

●

●

●

●

●

● ●

● ●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

● ●

●

●
●

●

●

●

● ●

●●

●
● ●

● ●

●

●

●

● ●

●

●

●

●

●

●

●

●

● ●●

● ●

●

●

●

●● ●

●

●

●

●

● ●
●●

●

● ●●●

●

●

●

●
●●

●

●

●

● ●
●

●

●

●

●

● ●

●

● ●

●●
●

●

●●
●

●●

● ●
●●

●

●
●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

● ●
●

●●
● ●

●

●

●

●

●

●
●

●

● ●

●●
●

●
● ●

●

●

●
●

●

●
●

●
●

●
●

●

●

●
●

●
● ●

●

●

●

●

●

●

●

●
●

●● ●

●

●

●

●
●

●

●

●

●
●

●●

●
● ●

●

●

●

●
●

●

●

●
●●

●

● ●
●

●

●●●
●

●

●

●●

●
●

●
●

●

●

●

●

●

●
●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●●
●

●

●

●

●

●

●

●

●●
●

●
● ●●

●

●

●
●

●

●

●●

●
●

●

●●●

●

●

●

●●
●

●

●

●

●

●

●
●

●

●
●

●
●

●

●

●●
●

●

●

●

●
●

●
●

●

●
●

●
●

●

●

●
●●

●

●
●

●

●

●

●

●

●
● ●

● ●

●

●

●

●

● ●

●
●

●

●

● ●●

●

●
●

●
●

●

●

●●

● ●

●

●
●

●
●

●

●

●

●

●

●

●●

●

● ●

●
●●

●

●
●●

●

●

●

●
●

●

●

●

●

●

●

●

●● ●

●

●

● ●

●

●

●

●

●

●

●

●●

●
●

●

●

●
●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

● ●
●

●

●

●

●

●●

●
●

●

●

●●
●

●

●

● ●●

●
● ●

● ●
●

●

●

●
●

●

●

● ●●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

● ●

●

●

●

●
●

●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●
● ●

●

●
●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●●
●

●

●

●

●
●

●

●

●●
●

●

●

●

●

●●

●

● ●

●
●

●

●
● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●●

●

●

●

● ●
●

● ●● ●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●
● ●

●
●

●

●
●

●

●

●

●

●
●

●
●

●

●
●

●●

●

●

●

● ●●

●

●●
●

● ●
●

● ●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

● ● ●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

● ●

●

●

●
● ●

●
●

●

●

●
●●●

●

●

● ●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●
●

●

●

● ●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●●

● ●●

●

●
●●

●

●

●

●●●

●
●

●

●

●

● ●

●

●
●

● ●

●

●

●

●●
●●

●

●

●
●

●

●●

●
●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●
●

●

●

● ●

●●

●

● ●

● ● ●●

●

●

●

●

●●
●

●
●

●

●

●

● ●

●

●

●●

●
●

●

● ●

●

●
●

●

●

●
●

●

●

●

●

●

● ●

●

●●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●● ●

●
●

●

●
●

●
●

●●

●●

●
●

● ●
●

●
● ●

●
●

●

●

●
●

●
●●

●

●

●

●

●

●● ●

●

●●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

● ●

●

●

●

● ●

●

●

●

●

● ●

●

●

●●

●
●

●●

●

●
● ●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●
●●

●● ●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●●
●

●

●

● ●

●

●
●

●●

●

●

●

●

●

●

● ●

●

●

●

●
●

●
●

●

●

●

●

●

● ●
●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●
●

●

●
●

●

●

●

●
●● ●

●

●

●
●

●

●

●

●

●●
●

●

●
●

●

● ●

●●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●●

●

●
●●

●

●

●

●●
●

●

●
●

●
●

●

●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●

●
●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●
●

●

●

●

●

●

●

● ●

●

●●

● ●
●

●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●
●●●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●●
●
●

●

●
●

●● ● ●

●

●
●

●

●

●

●
●

●

●
●

●
●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●
●● ●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●
●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●●

●

●
●

●
●

●

●
●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

● ●●
●

●

●●

●
●

●

●

●

●

●
●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●●
● ●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●
● ●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●
●

● ●

●
●

●

●
●

●

●● ●

●

●
● ●

●

●

●

●

●

●

●

●
●

●
●● ●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

● ●●

●

●

●

●

●

●
● ●

●

●

●

●

●

●
●

●

● ●

●

●

●

●
●

●
●

●

●

●●

●● ●

●

●

●●

●

●

●

●

●

●
●

●

●
●

●

●

●

●
●

● ●
●

●

●
●

●

●
●

●

●

●

●

●

●

●
●

●

●
●

●
●

●

●

●

●
●

●

●
●

●

●

●

●●

●
●

●

●

●
●

●

●
●●

●

●

●
●

●

●●
●

●
●

●

●

●

●
● ●

●●

●

●

●
●

●
●

●
●

●

●
●

●

●

●
●

●

●

●●

●
●●

●

●

●

●●

●
●

●

●
●

●

●

● ●

●
●

●

● ●

●

●

●
●

●

●
●

●

●●
●

●

● ●●

●
●

●

●

●

●

●

●

●
●

● ●
●

●
●

●

●

●

●●
●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●
●

●

●

●

●

●
●

●●

●

●
●

●

●

●

●

●

●
●

●

●

●
●

● ●

●
●

● ●

●

●

●

●

●●● ●

●
●

●
●

●

●

●

●
●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●●
●

●

● ●
●●

●

●

●
● ●

●
●

●

●

●

●

●

●

●●
●●

●

●

●

● ●●

●

●

●

●●

● ●
●

●●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

● ●

●

●●

●

● ●

●

● ●

●

●

●

●

●
●

●

●●

●

●

●

●
●

●●

●

●

● ●
●

●

●
●

●

●

●

●

●
●●

●

●

●

●
●

●

●●

●

●

●

●

●●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●●
●

●
●

●

●

● ●

●

●

●

●

●

●

●

●
●

●
●

●

●
●

●

●
●

●

●

●

●
● ●

●

●

●
●

●

●

●

●

●
●● ●

●

●

●
●

●

●

●
●●

●

●
●

●
●

●

●

●

●
●

●

●

●
●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
● ●

●
●

●

●
●

●
●

●

●

●

●

●
●

●

●

●

●●

●

●
● ●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●
●

●●
●●

●

●●

●

●

●

●

●

●
●

●

●

● ● ●

●

●

●

●

●

●

●
●

●
●

●

●●●

●

●

●

●

●
●

●

●

●

●
● ●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●
●●

●

●
●

●
●

●

● ●●

●

●

●

●
●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

● ●

●

●
●●

●
●

●

●

● ●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●
●●

●

●

●

● ●

●

●
●

●

●
●

●
●

●

●

●

●

● ●
●

●

●

●

●
●

●●

●

●

●
●

●●

● ●
●

●

●

●
●

●

●

●
●

●

●

●

●

●

● ●
●

● ●

●

●
●

●

●
●

●

●

●

● ●

●

●● ●

●

●
● ● ●

●

●
●

●

●

● ●

●

●

●●

●
●

●
●

●
●

●
●●

●

●

●

●

●
●

●●

●
●

●●

●

●
●

●

●
●

●
●●

●
●●

● ●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●●

●

●

●●

●

●

●

●
●

●

●
● ●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●●
●

●

●
● ●●

●

●

●

●

●

●

●

●

●●

●
● ●

●

●

●

●

● ●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●
●

● ●

●

●

●
●

●
●

●

●

● ●
●

●

●
●

●

●

●

●

●

●●
●

●

●

●

● ●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

● ●

●

●●

●

●

●
●

●
●

●●●
●

●

●
●

●

●

●

● ●
●

●

●

●

●
●

●
●

●

●

●

●●

●
●●

●

●
●

●

●
●

●

●

●

●
●

●

●

●

●
●

●

●
●

●

●

●
●

●

●

●
● ●

●

● ●●

●

●
●

●●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●
●

●
●

●
●●

● ●●

●

●

●
●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●●
●● ●

●

●

●

●
●

●

●●
●

●

●

●●
●

●

●

●

●

●

●●

●
●

●
●

●

●

●

●
●●

●

●
●

●

●
●

●

● ●

●

● ●

●

●●

●●

●

● ●

●

●

●
●

●

● ●

●
●●

●

●

●

●

●

●
●

●

●
●●

●●

●

● ●

●
●

●●

●

●●

● ●

●

●

● ●
●

●

●

● ●

●
●

●●●

●

●

●

●
●

●

●●●

● ●

● ●

●
●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●●

●
●

●●

●
●

●
●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●
●

●

●

●
●

●

●

●
●

●

●● ●

●

●

●

●● ●

●

●
●

●

●

●

● ●

●

●

●
●

●

●
●

●

●

●
●

●

●

● ●
●

●
●

●

●

●
●

●

●

●●

●

●

●

●
●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●●

●

● ●
●

●

●

●● ●

●

●

●

● ●
●

●

●

●●
●

●

●

●

●
● ●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●
●

●

●

●

●●
●

●
●●

●

●
●

● ●

●

●

● ●

●

●

●

●

●

● ●

●

●

●

●
●●

●

●
●

●

●
●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●●

●

●

●
●

●

●

●

●

●● ●
●

●

●

●

●

●

●

●

●
●

●
●

●

●
●

●●

●

● ●

●

●

●

●

●

●
●

●

●

●
●

● ●

●●
●

●
●

● ●

●
● ●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●
●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

● ●

●

● ●

●

●

●

●

●
●

●

●●

●
●

●

●

●

●

●

●

●

●

●
●

●
●●

● ●

●

●●●

●
● ●
●

●

●

●

●
● ●

● ●

●●

●

●
●

●

●

●

●

●

●●

●

●

●

●
●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●
●

●

●

●
●

●●

●

●

●
●

●
●

●
●

●

●

●

●
●

●

●

●●

●

●

●
●

●

●

●

●●

●

●

●

●●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●
●●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

● ●
●

●
●

●

●
● ●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

● ●

●

●
●

●

●

●

●
●●

●

●

●
●

●

●

●
●

●
● ●

●●

●
●

●

●
●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

● ●

●
●

● ●

●
●

●

●

●
●

●

●●

●
●

●

● ●

●

●

● ●

●

●

●

●
● ●●

●

●

●

●

●
● ●

●
●

●

●

●
●

●

●

●

●●

●

●

●●

●
●

●

●
●

●

●

● ●

●
●

●

●

●

● ●
●

●

●

●

●
●

●
●

●
●

●

●

●
●

●

●

●

●

●

●

●●

●
●

●
●

●

●

● ●
●●

●

●

●
● ●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●● ●

●

●●
●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●
●

●

●
●

● ●●
●

● ●●●

●
●

●●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●
●

●

●
●

●

●

●
●●

●

●

●

●

●

●

●
●● ●

●
●

●

●

●

●

●●

●

●
● ●

●

●

●
●

●

●

●
●
● ●

●

●

●
●

●

●

●●

●

●

●

●

●

●
●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●
●

●
● ●

●
●

●

●

●

●

●

● ●

●

●
●

●
●

●

●

●

●
●

●●

●●

●
●

●

●

●

●

● ●

●●
●

●

●

●

●

●

●

●

●

●
●

●

●●
●

●
●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●
●

●

●

●

●

● ●

●
●

●●
●

●●
●

●

●

●

●
●

●
●

●

●
●

●
●

●

●

● ●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●
●

●

●

●
●

●

●
●

●
●

● ●
●

●

●

●

●
●

●● ●
●

●
●

●
●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

●

●

●
●

●

●

●

●

●

●

●●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●
●

●

●

●

●

●

●

● ●
●

●

● ●

●

●

●
●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●
●●

●
●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●

●
●

●
●

●●

●

●

●
●

●
●
●●

●

●
●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●
● ●

●
●

●

●

●

●

●●

●

●●

●
●

●

●●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

● ●
●

●
●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●
●

●

●
●

●●

●

●

●
●●

●

●

●

●

●
●

●

●
●

●

●●

●●

●●● ●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

● ●
●

● ●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●●
●

●

●
●●

●

●

●

●●●

●

●

●
●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●
●

●

●

●

● ●

●

●

●

●●
●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

● ●

●

●

●

●

●

●

●

●

● ●

●

●●

●

●

●

● ●●

●

●

●●
●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●
●

●●

●
●

●
●

●

●

●
●

●

●

● ●
●

●

●

●

●
●

●

●
●

●

●●

●
●●●

●

●

●

●

●

●

●
●

●

●

●●

● ●

●

●

●

●

●

●

●

● ●● ●
●● ●

●

●
●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●
●●

●
● ●

● ●

●

●

●

●

●
● ●

●

●

●

●

●

●

●
●●

●

●

●●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●
●●

●

●
●

●

●

●

●
●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●
●

●

●

●

●
●

●

●

●

●

●

●

● ●

● ●

●

●

●

●

●
●●

●
●

●

●
● ●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

● ● ●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●●

●

●
●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●
●●

●●

●

●

●

●

●

●

●

●

●

●●

●●

●
●

●

●

●

●

●

●
●

●

● ●

● ●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●
●

●

●●

●

●
●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●
● ●

●

●

●

● ●●

●
●

● ●
●

● ●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●
●

● ●
●

●

●

●

●

● ●

●

● ●

●

●

●●

●

●
●

●

●
●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

● ● ●●●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●
●

●

●

●●
●

●

●

●

●

●

●
●

●

●

●
●

●

●
●

● ●

●

●

●

●

●

●

●

●

●
●

● ●
●

●

●

● ●

●

●

●

●

●
●

●●

●

●

●

●

●
●

●●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●●

●

●

●
●

●

●

●

●

●

●●

●

●

●
●

●
● ●

●●

●

●

●●●

●

●●
●

●

●

●●

●

●
●

●

●●
●●

● ●

●●

●
●

●

●
● ●

●

●

● ●
●

●

●

●●
●

●

●
●

●
● ●●

●
●

●

●

●

●
●

●

●●
●

●●●
●

●
●

●

●

●

●
●

●

●
●

● ●

●

●●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●●
●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●
●

●
●

●

●

●
● ●

●
●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●● ●
●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●
●● ●

●

● ●

●

●

●

●

●

● ●

●

●

● ●
● ●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●
●

●

●

●
●

●

● ●

●

●

●
●● ●

●

●
●

●

●

●

●
●

●

●●

●

●
●

●

●

●
● ● ●

●●

●
●

●

●

●

●

●

●

●

●

●
●

●

●
●

● ●

●

●

●

●

● ●

●

●

● ●

●

●

●

●● ●
●●

●

●

●

●

●
●

●

●
●

●

●

● ●

●

●

●

●

●
●

●
●

●

●
●

● ●●
●

●

●

●
●

●

●

●

●
●

●

●

●●

●
●

●

●

●
●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

● ●

●

●

●

●

● ●
●

●

●

●

●

●

●●
●

●

● ●

●

●● ●

●

●

●

●

●

●
●

● ●

●
●

●
●●

●

●
●

●

●

● ●

●

●

●

●●

● ●

●

●

●

●

●

●
● ●

●

●

●
●

●

●
●

●

●

●

●

● ●

●

●● ●
●

●

●

●

●

●

●
●

●
●

●

● ●●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●
●

●

● ●

●

●●

●

●●

●
●●

●

●●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●●

●

●

●
●●

●

●

●

●

●

●

●
●

●

●

●●
●

●
●

●●

●

●

●

●

●● ●

●

●

●

●
●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●
●

●●

●

●

●

● ●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●
●●

●

●●
●

●

●

●●

●

●

●

●

●

●
●

● ●●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●
● ●

●
●

●

●●

●

● ● ●●

●

● ●

●

●

●

● ●

●

●●

●

●
●

●

●

●
●

● ●

●

●

●

● ●●

●
●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●
●

●
●● ●●

●

● ●
●

●

●

●

●

●

●
● ●

●

●

●

●

●

● ●
●

●

●

●

●

●
●

●

●
●

●

●

●

●

● ●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●
●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●● ● ●
●

●

●

●

● ●
● ●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●
●●

●

●

●
●

●

●

●
●

●
●

●

● ●

●

●

●
●

●● ●
●

●●

●

●

●

●

● ●

●

●

●

●

●
●●

●●

●

●

●

●
●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●
●

●

●

● ●

● ●

●●

●
●

●

●

●

●

●

●
●

●
●

●
● ●

●

●

●

●

●
●

●

● ●

●

●

●
●

●●

●

●

●

●
●

●

●

●

●

●

●
●●

●
●

●

●

●
●

●

●●

●

● ●

●

●

●

● ●

●

●

●

●
● ●

●

●

●
●

●

●

●●
●

●
●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
● ●

● ●

● ●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

●●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●● ●●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●
● ●●

●

●

●

●

●

●

●
●

●

●

●
● ●

●

●

●

●

● ●

●

●

●●

●

●

●

●
●

● ●

●

●

●
●

●●●

●

●●

●

●
●

●● ●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●●

●

●

●
●

●

●

●
●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

● ●

●

●

●

●

● ●

●
●

● ●
●

●

●

●

●

● ●

●

●
●

●

●
●

●

●
●

●

●

●

●

●●

●

●

●

●
●●
●

●

●

●

●
●

● ●

●

●

●

● ●

●

●

●●

●●

●

●

●

●
●

●
●●● ●

●
●

●

●

● ●

●

●

● ●●
●

● ●

●

●

●

●

●

●
●●●

●
●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

● ●

●

●

●
●

●

●
●

●

●

●

●

●
●

●

● ●
●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●
●

●
●●

●

●
●

●

●

●

●●
●

●

● ●

●
●

●

●

●
●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●
●

●●

●
●

●

●

●

●

●

●

●
●●

●
● ●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

extreme
corrected

(a)

−5 0 5 10 15

0.
00

0.
05

0.
10

0.
15

0.
20

x

f X

f̂X : λSURE = 1e−08
fX

(b)

−5 0 5 10 15

0.
00

0.
05

0.
10

0.
15

0.
20

x

f X

f̂X : λcorrected = 0.011
fX

(c)

Figure 6: (a) Scatter plot of the L1 error measure versus log10(λSURE) for 8,000 replicates of
the Gamma(5, 1) example; the dashed vertical line corresponds to λ = 0.011. (b) A poor pdf
estimate for the replicate corresponding to the open red diamond in the upper-left corner of panel
(a), for which λSURE is substantially underestimated. (c) A much-improved estimate f̂X for the
data for the same replicate featured in panel (b), but using a corrected λ = 0.011 obtained from
the scree plot method. The L1 error of this improved estimate is represented by the solid green
diamond in panel (a)

13

0.00 0.02 0.04 0.06 0.08

0e
+

00
2e

−
05

4e
−

05

λ

Q
(f X^

)

λSURE = 1e−08
λcorrected = 0.011

Figure 7: Scree plot for the replicate featured in Fig. 6b. The vertical red dashed line indicates
the value for λSURE, which was much too small on this example and resulted in the poor pdf
estimate in Fig. 6b. The vertical green dotted line indicates the corrected λ, chosen to the right
of the elbow, which resulted in the substantially better pdf estimate shown in Fig. 6c.

the right of the elbow. This is analogous to plotting the estimated regression coefficients versus
the regularization parameter in ridge regression to select the regularization parameter [Hoerl and
Kennard, 1970a,b].

A number of conclusions can be drawn from Fig. 6a. First, we note that the best single value
for λ in this Gamma(5, 1) example was roughly λ = 0.011, which we found by comparing the
MC average L1 error values for a range of fixed λ values (the results of which are omitted, for
brevity). We refer to this best single value of λ as the “oracle” value. The oracle value λ = 0.011
is also somewhat apparent from Fig. 6a, because if we smooth the scatter plot, the smoothed L1

error would be smallest at approximately λ = 0.011. Also from Fig. 6a, the mode of the 8,000
λSURE values produced over the 8,000 MC replicates was also 0.011, the same as the oracle value,
and in this respect the SURE-like method did an overall good job of selecting λ.

Another conclusion from Fig. 6a is that on replicates for which the SURE-like method did a
poor job of selecting λ, resulting in large L1 error, it was always because λSURE was underesti-
mated. Moreover, and significantly, for all of the replicates with λSURE underestimated, the scree
plots (not shown here, for brevity) always looked very much like the one shown in Fig. 7, and the
corrected λ (selected to the right of the elbow) always substantially improved the pdf estimate,
as in Figure 6c.

3.3 Illustration of the SURE method and of Scree Plot
We now illustrate how to have QPdecon find λSURE automatically and also how to select λ (or
correct λSURE) using the scree plot. Users can have QPdecon find λSURE automatically by setting
the argument of lambda in the QPdecon(...) function to "SURE", which is the default, as

14

in the following code.

Let QPdecon find lambda_SURE and use it in the QP estimator
L=QPdecon(Y=Y,Pdf=TRUE,K=K,f_Z=f_Z,lambda="SURE",reg="2Deriv",
+ integr=TRUE,nonneg=TRUE)

Plot the estimator
plot(L,histo=TRUE)
Compare with the true pdf
lines(L$x,dgamma(L$x,5,1),lwd=1)

Fig. 8 shows the histogram for the same sample of observations of Y depicted in Fig. 3, as
well as the true and estimated pdf of fX (black dashed curve and red solid curve, respectively).
The automatically selected regularization parameter for this example is λSURE = 0.007295, and
we can see this automated selection worked quite well for this example despite f̂X having a slight
oscillation on the right tail.

0 5 10 15 20

0.
00

0.
05

0.
10

0.
15

0.
20

x

f X^
(x

)

f̂X : λ = 0.007295

Figure 8: Histogram of the observed data Y together with the true pdf of X (black dashed
curve) and the QP pdf estimator (red solid curve) using λSURE = 0.0073 obtained from the
QPdecon(...) function.

As an alternative to using the SURE-like method to select λ, or as a check that λSURE is
appropriate, we recommend also using the ScreePlot(...) function in QPdecon. The
ScreePlot(...) function constructs the scree plot by repeatedly calculating the QP estima-
tor f̂X for a set of values of λ (which are determined automatically if the lambda argument is
set to "Scree", the default). The argument lambda can also be specified as a vector of fixed λ
values for which the QP estimation problem will be solved for the scree plot. Other arguments to
the ScreePlot(...) function are the same as the arguments to the QPdecon(...) func-
tion. In addition to creating the scree plot, the ScreePlot(...) function also returns two
vectors, lambda.seq and reg.penalty, which corresponds to the horizontal and vertical

15

axes of the scree plot, respectively. The scree plot for the data depicted in Fig. 3 and Fig. 8 is
shown in Fig. 9a (the arrows and dashed lines were added separately), and the corresponding R
code is as follows.

Produce a scree plot for selecting or checking lambda
S=ScreePlot(Y=Y,K=K,f_Z=f_Z,lambda="Scree",reg="2Deriv",integr=TRUE,

+ nonneg=TRUE)
names(S)

[1] "lambda.seq" "reg.penalty"

The long green arrow in Fig. 9a indicates λSURE = 0.073, which was obtained from the
automated SURE-like method. We have added the two dashed vertical lines to indicate roughly
what may be viewed as the lower and upper bounds of the candidate λ values suggested by the
scree-plot method, and we denote any λ falling in this range as λScree. The arrow to the left of
λSURE indicates a value (λ = 0.001) that falls substantially below the λScree range and is clearly
to the left of the elbow. The arrow to the right of λSURE indicates a value (λ = 0.015) that is
within the λScree range. The QP pdf estimators corresponding to these two λ values are shown in
Fig. 9b, from which we can see that using a λ value that is too small results in tail oscillations and
over-estimation in the middle quantiles, whereas using a moderate size of λ within the range of
λScree smooths the oscillations without deteriorating (oversmoothing) performance in the middle
quantiles. For this particular replicate, the SURE method provides a regularization parameter
λSURE that falls within the range of λScree and results in good performance. However, as discussed
earlier, there are replicates on which λSURE is chosen too small, and when this happens, the scree
plot clearly indicates this (because λSURE falls to the left of the elbow, as in Fig. 7), so that a
more appropriate λ can be selected to improve the performance of the QP method.

4 Summary
In this vignette, we have described the QPdecon package. This package uses quadratic pro-
gramming (QP) with constraints for density deconvolution assuming an additive measurement
error model. The QPdecon package implements the QP density deconvolution method via the
QPdecon(...) function, and it also contains two schemes to select the regularization param-
eter. The first scheme is the automated SURE method, which is the default in QPdecon. The
second scheme is a scree plot, implemented via the function ScreePlot(...). It should be
noted that one can obtain a cumulative distribution function (cdf) estimator simply by integrating
the pdf estimator produced by QPdecon.

Yang et al. [2018] compared the QPdecon method to the KD method and also to the wavelet-
like penalized contrast method (Comte et al. [2006]) implemented by the R package deamer
(Stirnemann et al. [2012]). The latter was, aside from the QPdecon approach, the best performing
R package that Yang et al. [2018] found. From Yang et al. [2018], the QP method appears to have
a more favorable tradeoff between oversmoothing versus tail oscillation than existing methods.
Additional advantages of the QP method are that a number of relevant constraints on the pdf
can be easily incorporated into the QP formulation to further improve performance, and that the

16

0.00 0.02 0.04 0.06 0.08 0.10

0.
0e

+
00

1.
0e

−
05

2.
0e

−
05

3.
0e

−
05

λ

re
gu

la
riz

at
io

n_
pe

na
lty

λScree

λSURE

(a)

0 5 10 15 20

0.
00

0.
05

0.
10

0.
15

0.
20

x

f X
(x

)

f̂X : λ = 0.001
f̂X : λ = 0.015
fX

(b)

Figure 9: (a): Scree plot for the data depicted in Fig. 3 and Fig. 8 obtained using the
ScreePlot(...) function in the QPdecon package. The long green arrow indicates the
value of λSURE used in Fig. 8, and the two dashed vertical lines roughly indicate the range of λ
values suggested by the scree-plot method. (b): The histogram of the observed data Y together
with the QP estimators for the “inappropriately small” λ value (0.001) indicated by the blue ar-
row in panel (a) and for an appropriate λ value (0.015) indicated by the red arrow in panel (a),
which falls within the λScree range.

17

quadratic nature of the QP formulation is amenable to developing a computationally efficient
SURE-like method of selecting the regularization parameter.

Yang et al. [2018] found, for a relatively small percentage of replicates, that the automatically
selected λSURE was unreasonably small, which resulted in an erratic f̂X like the one in Fig. 6b.
This occurred on approximately 5% of the replicates for the gamma example and 1% of the repli-
cates for the exponential example. This problem can be remedied using the scree-plot method as
illustrated in Fig. 7.

References
J. Barry and P. Diggle. Choosing the smoothing parameter in a fourier approach to nonparametric

deconvolution of a density estimate. Journal of Nonparametric Statistics, 4(3):223–232, 1995.

R. J. Carroll and P. Hall. Optimal rates of convergence for deconvolving a density. Journal of the
American Statistical Association, 83(404):1184–1186, 1988.

F. Comte, Y. Rozenholc, and M.-L. Taupin. Penalized contrast estimator for adaptive density
deconvolution. Canadian Journal of Statistics, 34(3):431–452, 2006.

A. Delaigle and I. Gijbels. Practical bandwidth selection in deconvolution kernel density estima-
tion. Computational statistics & data analysis, 45(2):249–267, 2004.

P. J. Diggle and P. Hall. A fourier approach to nonparametric deconvolution of a density estimate.
Journal of the Royal Statistical Society. Series B (Methodological), pages 523–531, 1993.

B. Efron. How biased is the apparent error rate of a prediction rule? Journal of the American
statistical Association, 81(394):461–470, 1986.

J. Fan. On the optimal rates of convergence for nonparametric deconvolution problems. The
Annals of Statistics, pages 1257–1272, 1991.

J. Fan. Deconvolution with supersmooth distributions. Canadian Journal of Statistics, 20(2):
155–169, 1992.

P. J. Green and B. W. Silverman. Nonparametric regression and generalized linear models: a
roughness penalty approach. CRC Press, 1993.

P. Hall and A. Meister. A ridge-parameter approach to deconvolution. The Annals of Statistics,
35(4):1535–1558, 2007.

A. E. Hoerl and R. W. Kennard. Ridge regression: Biased estimation for nonorthogonal problems.
Technometrics, 12(1):55–67, 1970a.

A. E. Hoerl and R. W. Kennard. Ridge regression: applications to nonorthogonal problems.
Technometrics, 12(1):69–82, 1970b.

C. L. Mallows. Some comments on c p. Technometrics, 15(4):661–675, 1973.

18

A. Meister. Deconvolution problems in nonparametric statistics. New York, Springer, 2009.

E. Parzen. On estimation of a probability density function and mode. The annals of mathematical
statistics, 33(3):1065–1076, 1962.

M. Rosenblatt. Remarks on some nonparametric estimates of a density function. The Annals of
Mathematical Statistics, 27(3):832–837, 1956.

B. W. Silverman. Density estimation for statistics and data analysis, volume 26. CRC press,
1986.

L. Stefanski and R. Carroll. Deconvoluting kernel density estimators. statistics 21 169–
184. Mathematical Reviews (MathSciNet): MR1054861 Digital Object Identifier: doi, 10:
02331889008802238, 1990.

L. A. Stefanski. Rates of convergence of some estimators in a class of deconvolution problems.
Statistics & Probability Letters, 9(3):229–235, 1990.

C. M. Stein. Estimation of the mean of a multivariate normal distribution. The annals of Statistics,
pages 1135–1151, 1981.

J. Stirnemann, A. Samson, F. Comte, and C. Lacour. Deconvolution density estimation
with adaptive methods for a variable prone to measurement error, July 2012. URL
https://cran.r-project.org/web/packages/deamer/index.html.
R package version 1.0.

B. A. Turlach and A. Weingessel. Functions to solve Quadratic Programming Problems, Febru-
ary 2015. URL http://CRAN.R-project.org/package=quadprog. R package
version 1.5-1.

X.-F. Wang and B. Wang. Deconvolution estimation in measurement error models: The r package
decon. Journal of Statistical Software, 39(10), 2011.

R. Yang, D. Apley, J. Staum, and D. Ruppert. Density deconvolution with additive measurement
errors using quadratic programming. submitted, 2018.

19

