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Appendix: Proofs
To show the theorems, we need some notations and lemmas. In the following, we will use
¢ to denote different positive constants in different places, while a < b means a < ¢b, and

a 2 b means a > cb.

A Notation

For ease of presentation, we introduce more notation related to the Fréchet derivatives. Let
S, (a) and S, x(a) be the Fréchet derivatives of [, (o) and [, »(«), respectively. Denote [(«) as
the asymptotic value of [, (), and ) («) = [(«) — AJ(5, ) /2. Similarly, let S(a) and Sy («)

be the Fréchet derivatives of [(«) and [)(«), respectively. Let D be the Fréchet derivative



operator and a; = (0., 5;(*)),i = 1,2,3 € H be any direction. Then, we have
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= DS, (a)ajasas.

There exists a sequence of functions wy, k = 1,2, ..., p, such that (wy, 8),, = V (G, §). Direct

calculations yield that wy(-)=>_72, Gjrh;(-)/(1 + Ap;). Denote w = (wy,wa, . . . ,wp) . Thus,



w = (id — W,)G. Furthermore, by the Riesz representation theorem, there exists an element

in H™ denoted as m,, such that (r,, 3 fH t)dt. Through direct calculations, we
have m, = Y377, [i2(t)h;(t) dt/(1 + Ap;)h;(-). Define R, = (Hy,Ty) with w = (2, (),
where

Hy = {X - V(G,G)+ V(G,W\G)} "z — V(G )}, and

Ty=m,—w{S - V(GG +V(G,W\G)}y {z - V(G, 7))}

Then we have (R, a), =0Tz + [ 2(t)53(t) dt.

Also define R, as Ry : u — (H,,T,) € H, where u = (2 ,1),

= {2 - V(G,G)+V(G,W\G)} 'z —w(t)), and
T, =K, —w {Z-V(G,G)+ V(G W\ G)} 1z —w(?)).
Then we have that <7€u, Oé>>\ =02+ B(1).

Define Pra = (f[a, Ta), where

H, = —{X-V(G,G) + V(G W\G)}'V(G,Wy6), and

To =WiB—{Z - V(G,G) + V(G, WG} 'V (G, W,p).

Then Pya € H and (Pya, an), = (Wi, B1),, for any oy = (0], 81) € H. Tt follows from the

Cauchy-Schwarz inequality that ||Py]|» < 1 and P, is self-adjoint.



B Lemmas

Lemma B.1 Under Condition (C1), we have DS\(cy) = —id, where id is the identity

operator.

This result directly follows from the definitions of the inner product and DSy ().
Denote [|a|le = ||0]l2+ || 8]/ z,- The following lemma provides the relationship between the

general Euclidean norm || - || and the norm || - ||5.

2a+1)/2

Lemma B.2 There exists a constant k > 0 such that for any o € H, ||l < kh~ || x-

Proof of Lemma B.2. For any u = (2,t), direct calculations yield
<R 7~zu>A = {2~ wt)} S — V(G Q) + V(G WG}z — w(t)) + K (t).

It follows from Condition (C3) that {¥ — V(G,G)} ! is positive definite and V (G, W)\G) —
0. Let ¢ denote the minimum eigenvalue of {¥X — V(G,G) + V(G, W,G)}. Then we have
{¥-V(G,G)+ V(G,W)\G)} ' < ¢ '1 with 1 being the identity matrix. Thus, we have

{z —w®)}{Z - V(G,G) + V(G,W\G)} Hz —w(t)} S|z —w(t)||3. Then we have
(R Ru) S NIz = w (@3 + .

By the arguments in Cheng and Shang (2015, page 1379, lines 5-11), we hace sup,¢; |w(t)| =

O(1), and it follows from the definition of K, that ||/|[x < h~(@*1/2). This implies that



[Ru|lx < h~(@+1/2) Then, we have

lledle =M101l2 + 118112, < [16]l2 + 115]]sup

= sup |B(@)+0'z|= sup <7~3u,a>/\

[|z]|2=1,t€l [|z]]2=1,t€l

<[lallx sup | Ryl
|z|2=1,t€l

<h7(a+1/2)||a||/\.

~Y

Lemma B.3 Suppose that Conditions (C1)-(C4) hold. Then for any o € H,
E(|(Rw, a) 3 Dsllal3-
Proof of Lemma B.3. By Conditions (C1) and (C4), we have
4
Ew((Rw,a),)" = Ew {eTz + /X(t)ﬁ(t) dt}
I
2
< M, {EWWZ + /X(t)ﬂ(t) dt\z}
I
. 2
<{ [ vatnniT = o8- uBaNe)} £ lall
0

Lemma B.4 Suppose that Conditions (C1)-(C3) hold. Then for any x € Ly([0,1]), there

exists a universal positive constant c, such that
(Rz2:Rza)y < (2115 + 2)2,p7*7Y)  and  E{|Rwl} < c:h™"
Proof of Lemma B.4. Direct calculations yield that

(R Ru)y =2 {Z = V(G,G) + V(G,W\G)} ‘2 + (7, m0),, — 22 {Z = V(G,G)

+ V(G WGy V(G 7)) + V(G 1) {E = V(G,G) + V(G, WG} V(G 7). (B.1)



It follows from Condition (C3) that {3 —V(G, G)} ! is positive definite and V (G, W)\G) —

0. Let ¢ denote the minimum eigenvalue of {¥ — V(G,G) + V(G,W,G)}. Then we have

{¥-V(G,G)+ V(G,W)\G)} ' < ¢ 1 with 1 being the identity matrix. Thus, we have

Y - V(G,G) + V(G,W,G)} 'z < ||z||3. Direct calculations yield that (mx,7x), <

| X12,h722"  and V(G,7x) S || X||z2h =27 /2. Thus, there exists a constant ¢, > 0 such that
(Rw, Rw)y < ¢ (I Z])3 + | X|[720727).

Besides, it follows from (B.1) and the proof of Lemma S.4 in Shang and Cheng (2015) that

E <Rw, Rw>)\ S Crh_l.

The proof is completed.
To derive the rate of convergence, we still need the following concentration inequality as

a preliminary step. Define F,, = {a = (07,8(:)) € H: |0]l2 < 1,18z, < 1,J(5,8) < pu},
1 n
Hn(@) = 7= D [6a(¥i, Wi ) R, = Bgu(Y, Wis )R],
i=1

where ¢, (Y;, Wi; a) is a function of the observation and parameter, which may depend on n.

Lemma B.5 Suppose that Conditions (C1)-(C4) hold. If ¢,(Y;,W;; 0) = 0 a.s., and there

exists a constant Cy > 0 such that
|¢n(}/:n VV’LJ O(l) - ¢n<Y;7VV17 OéQ)‘ S C¢)||O{1 - 052||67 fOT Cmy aq, Q2 S H?

then we have

. [ Hn(@)]lx -1 1/2
hmP( sup < {5h " loglog(n)}" ) =1,
n aEF,, p711/(4m)”a||z 4+ n-1/2

where v =1—1/(2m).



Proof of Lemma B.5. Denote N(9, F,, .| - ||2) as the d—covering number of the class F,,,

in terms of || - || norm. Then it follows from Theorem 9.20 of Kosorok et al. (2008) that

log N (8, Fp,., || ll2) < N (&, p/ > Fu, || - [|2)

< N<p771/257 -Fh H ’ HQ)

< max{(p, /20) 7M™, (p,120) 7M7Y,
where p is the dimension of . Thus the conclusion of the lemma directly follows from
exp(—cmax{(p;/26)7Y™ (p1/26)7VPY) < exp {—c(p;/20) 7Y™}

and the proof of Lemma 3.4 in Shang and Cheng (2015).

C Proofs of Theorems

C.1 Proof of Theorem 3.1

First, we show that there exists a unique a, such that Sy(a,) = 0. Let ry,, = 2{J(Bo, 5o) +

1}/2p* and define the operator: Ti;(a) = a + Sx(ag + ), a € H. It is easy to see that
[Tin(@)llx = llor + Sx(er 4+ o) |lx < flae + Sa(er + ) = Salao)llx + |Sx(ao)[x-

Let B(e) = {a € H, |lal[x < €} be the ball of radius € in H. Note that S(ag) = 0, which

implies that S)(ag) = —Paap. It follows from the Cauchy-Schwarz inequality that

1S3 (o) [l = [Praolln < {NT(Bo, o) }/? < {T(Bo, Bo) + 1}1/2h* = % (C.1)



By Lemma B.1, we have

1
a4+ Sa(a + ap) — Salao)||a :Hoz+DSA(a0)a—|—/ / sD*Sy(ap + ss'a)aads ds'||
o Jo
1 1
=||/ / sD%S)\ (o + ss'a)aa ds ds'||
o Jo

< /1 /1 5| D*Sx(ag + ss'a)aa||y ds ds’. (C.2)
o Jo
From the definition of DSy (a), Lemmas B.2 and B.4, and Condition (C1), we have
ID?Sx (a0 + ss'a)aally S {E (Rw, a)\ ) ERw |3} < llalie/?h72. (C.3)
From inequalities (C.1)—(C.3), we have
ITunlln < cllalet®n> 4 5. (C.4)

Since h = o(1) and k > a + 1/2 > 1/2, we have 7,h~*/2 = o(1). Then for any a € B(ry,),
| Tin||x < 71 for large enough n. This implies T3, (B(71)) C B(r1). Next, we show that T3,
is a contraction mapping. For any a; = (QJ-T, B;i(-)) € H,j =1,2, we have
Tin(ar) — Tin(aa) = a1 — ag + Sx(ag + a1) — Sx(ap + az)
1
- / [DSy{ao + as + s(a1 — as)} — DSx(ap)](1 — ) ds
0

:/0 /0 S/DQS)\[OZO + 5’{C¥2 + 8(041 — 062)}](051 — a2){a2 + 5(a1 _ a2>} ds ds’.



By applying the similar arguments used in proving inequality (C.4), we have

HT1h(041) - Tlh(az)H,\
1 1
§/ / s'||D?Sy[og + ' {aa + s(a1 — )} (a1 — a){as + s(a1 — ay)}||adsds’
0 0
1 1
S [ [ 1B Rwar = 0 HEIRw 3 HE (Rup,a + s(an = az)) ) dsas
0 0
< llar — aalae 2 ([lan — aol|x + [laz]|y)
1/2

< rinllon — aollaey?hT

< 1/2[ag — az|x.

The last inequality follows from the fact that r1,h~/? = o(1). Then Ty, (c) is a contraction
mapping on B(ry,). By the Banach fixed-point theorem, there exists a unique o/, € B(ry,)
such that T1,(cfy) = o). Define oy = o), + ap. Then S)(ay) = 0 and [Jay — apllx < 1.
Second, we show that there exists a unique &, ) such that S, (G,,.) = 0. Since |lay —
aplly = O(r1,) = o(l) and DSy(ag) = —id, it follows from the Taylor expansion and
inequality (C.3) that DSy(«,) is invertible. By the similar arguments used in Shang and

Cheng (2015), we can get that || DSx(a)|[x € (1/2,3/2). Now define the operator

Ton(a) = a — {DS\(an)} 'Sunlar + )
= —{DS)\(OQ\)}_I{DS”’)\(OQ\)OZ — DS)\(CYA)O(}
— {DS)\<C¥)\)}_1{SR,)\(OQ\ + Oé) — Sn)\(O{)\) — DSW)\(CY)\)O{} — {DSA(Oé)\)}_ISn)\(CY)\)

E]1—|-IQ+I3.
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It follows from the functional central limit theorem that uniformly in ¢ € I

IFZ% (1) exp{na, (W)} — s (t, )| L = Op(n7172). (C.5)

By Lemma B.3 and the functional central limit theorem, we have

H_Zy] eXp{naA j)}RWj - E[yj(t) eXP{Um(M/j)}RW]—]HA

= Sl|1pzl< Z)}] ) exp{7a, ( j)}RWj—E[yj(t)eXP{Um(Wj)}ij]aal>

= O,(n~12h271/2), (C.6)

It follows from Sy (a) = 0, Lemma B.2, and equations (C.5) and (C.6) that E||[DSx(ay)|L3||3 =
O((hn)~Y). This implies that ||S,.x(ax)|[x = Op((nh)~'/2). Let ¢ be a positive constant sat-
isfying P(||Spa(ay)|lx < c¢(nh)~'/?) — 1. Define 1y, = 2c¢(nh)~"/? and B(rq,) = {a € H :

|la|[x < ron}. Then we have P(||Spa(n)|[x < ron/2) — 1. Define I' = N A,,;, where
Api = {1 Zill2 < clog(n), [ Xi][r2 < clog(n), exp{na, (Wi)} < clog(n)}

for a constant ¢. From Condition (C4), we can choose ¢ large enough such that P(I') — 1
and P(A¢;) = O(n™!). To handle I, we have

Y0 Vi(Ya) exp{na, (W)) }1a (W) Ry,
S5V (Vi )
_/Tng(t?ao)E[yj(t)exp{%( ) 3110(W;) R, | o

0 sy (t, ay)
1~ 2y Vi(Ys) exp{na, (W) }na(W5) 3071 Vi(Yi) exp{na, (W)} Rw,
WE;& S (V;, 0P
A0 EY(t) exp{nay (W) }na(W)]E[Y(t) exp{na, (W)} Rw]
sy (t, ap) [ (0)(25 )]2 ho(
0 S1 (T, ax

EIM —|—112. (07)

[EENERTANEY B pre
=1

1) dtH

o,
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For I;, we have

1L~ [t 200 V() exp{na, (W)) }na (W)) R,

[111][x < H—E/O SO, an)

EY;(t) exp{na, (W) }1a(W;) Rw; ]
sgo)(t,oz,\)

dwm

A

1 «— [T EY;(t) exp{na, (W;) }1a(W;) Rw;
+ HE Z/O $O(t, o) al)

i /0 SOt ) 2 exp{% (( D1 (W)Ruwy - dtHA

t Oé)\)

= L + Lo + Ins.

For 1113, we have

= | [ BT R o s

= Op((nh) ") la]-

To infer 111, define

Vj(to) exp{na, (W) }na(W;) I

(Y, Wy o) =

st (to, @)
Then for any oy, ay € H, we have
1
6(Y;, Wy an) — o(Y;, Wy ao)| = @—yj(to) exp{1a, (W;) {1y (W) = 110y (W)) }H 4,
(to, ax)
clog(n)
< ———|(Rw;, a1 —az), |1a,,
(0) (t07 Oé)\> | < W] 1 2>>\ |
2
_ felogy?,

N Sgo (t07 OO\)
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Define ¢, (Y;, Wj;a) = s\” (to, )2 {log(n)} ~26(Y;, Wj; ay). Then
|¢n()/]7 I/Vj; al) - ¢R(Y77 ij;a1>| S Hal - OQ”E'

For any a # 0 € H, let & = a/(d,||a||s), where d,, = kh=(2*D/2 Tt follows from Lemma
B.3 that ||@. < dy||@|[x = 1. Then we have ||0]|; + |||z, < 1. Meanwhile, we have
M (B,5) < ||@||? = d;2. Then J(B,5) < A'd;2 = p,. By Lemma B.5, we obtain that for

any a € B(ra,),

n

> [6nlY, Wi &) Ry, — E{¢n(Y;, Wj; &) R, }]

J=1

< (n'/2pl/em 4 1) {p loglog(n)}l/z) =1.

hmP(

A

Therefore, we have

n

> [6(Y;, Wy a) R, — E{é(Y;, Wy; a) Ry, }]

J=1

limP(

A

< dy{log(n) Pllallx(n2p}/ ™) + 1){h~ loglog(n)}'/2) = 1.

It follows from the definition of A,,; that

HEWJ(%)GXP{%J ) 3a(W;)Rw, Lag ]
sg)(t,a,\)

‘)\ < E| <RWJ'>O‘>,\RWJ‘]A%J- \

= O(P(A;)' 2R )l = o(D) [l

Thus, we have

2k— 2a1

Ly = Op(n~ V2710t D" {log(n)}*{loglog(n)}?)[lallx + op(1)[lerllx = 0p(1)llx]|.

From Lemma B.4, we can get that

—HZ/ Z% ) exp{7a, (W) }a (W )RWJCZN()H/\ZOp(h_l/QHQHA).
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Then by equation (C.5) and (nh)~! = o(1), we have 112 = 0,(1)]|a]|x.
Similar to I;1, we can get that I15 = 0,(1)||a||x. Therefore, for any a € B(ra,,), ||[DSx(an)] 1] <

T9,/18. For ||[[DSa(ax)] 125, we have
IDSA (@) L2]lx = [{Snalan + @) = Spalar) = DSpa(an)at]x
11
= H/ / sD*S, \(ay + ss'a)aads ds'||y.
0 Jo
It follows from inequality (C.3) that

| DS, 5 (x4 ss'a)aal|y
< ||D?S,a(ay + ss'a)aa — D*Sy(ay + ss'a)aal|y + || D*Sx(ay + ss'a)aal|

= || D*Spa(an + ss'a)aa — D2 Sy(ay + ss'a)aally + OV |a|)3.
By using the similar arguments applied to 111, we can get that

| DS, (ay + ss'a)aa — D*Sy(ay + ss'a)aal|y

_ 2k—2a—1

:Op<n_1h_(2a+l) o log(n)g{loglog(n)}l/Q{l—l—n_1/2}>HozH,\

1 1 |
h1/2 + \/ﬁh(a+1}%72k:ﬁf;*1 {log

+0,( (n)}*{loglog(m) }/2h~12(1+ {nh?} /%)

2 log(n)h~ D/ 42 DS fog (n) )2 {log log () } /2 + 2! ) la .
It follows from « € B(ry,) and the conditions in the theorem that
| D2Sua(cy + ss'a)aa — DSy (ay + ss'a)aally = 0,(1) ]|
Then we have ||[[DS)(ay)]2|[x < 11||a|[»/18. Therefore, for any a € B(rs,),

[Ton(@)llx < [Hallx 4 [[2]lx + [[s]lx < 1175, /12.
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That is, T, (B(re,)) C B(ry,). Using the same arguments as the above, we can get that
Ty, is a contraction mapping in B(ry,). Therefore, there exists a unique o/ € B(rg,) such
that Th, (/) = o, implying S, \(ax + ) = 0. Let &, = ay + . Then S, \(dnn) = 0.

Therefore, with probability approaching to 1, we have

[Gnx — ollx < T1n + 120 = Op((nh) ™2 + BF).

C.2 Proof of Theorem 3.2

It follows from Theorem 3.1 that there exists a constant M > 0 such that, with probability
approaching to one, ||&n — ap|[x < Mr,. For simplicity, denote o« = &, » — ap. We can
assume that ||« < Mr, since its complement is negligible in terms of probability. Let
dp = kMh=2eD/2p & = d-'a, and p, = K~ 2h'"?* where & is a constant given in Lemma
B.3. Clearly, p, > 1 when n is large enough since h — 0 with n — oo and 1 — 2k < 0. It
can be shown that ||a|[y < Mr, implies & € F,,. To see this, write & = (87, 3(-)). Then

1]l = d-Ylall. < d:teh=CatD2||a ||y < dilkh~ @@ D/20 ) = 1. Thus, we can get
J(B.8) = d 22T (B,8)} < d2A7Mal} < 2NN (M)t = 5720 =,
Besides, we have

[Snala +ag) = Snalan) — {Sa(a + ag) — Sx(ao) Hix

=[|Sn(a + ag) — Sulan) — {S(a + ap) — S(ao)}|a- (C.8)
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For the right hand side of equation (C.8), we have

[Sn(a + ap) = Snlao) — {S(a + ag) — S(ao) Hi

1 ¢ nt ijj(yi)eXp{na+ao(Wj)}RWj
:H*ZAZ' R = (0)
n Sl (Yi’a_’_ao)
nt Y7 Vi(Ys) exp{na, (W)} Rw,
_7ZA Ruy, — > Vil (()))X {1100 (W;)} R, ~ (S(ar+a0) — S(a }H
Sl (1/1'7040)

Z y] exp{na-i-ao( )}RWJ Zj yj (t) eXP{Uao(Wj)}RWj
<[5 Z/ { ) ) }

nS(O)(t ap + «) n5§0) (t, o
EY(t) exp{nat+ae(W)}Rw  EY(t) exp{ne,(W)}Rw -
! { s, ojo + a) - s\7(t, ap) }] dNi(t)HA + o)™
1 > yg( i) exp{iatae Wi} R, 225 V5(#) exp{na, (Wj)} Rw,
= H n ;/0 { nsg )(t, ap + a) n$§0) (t, ) }

EY(t) exp{Nata(W)}R EY(t) exp{na,(W)}R
+{ (0P araaWIRw V(O xplren(V)) W}] i
57 (t, a0+ ) sy (t, o)

o 1 1
+Up (nh)1/2 + hl/2+apl/2 ) °
Define I' = N | A,,;, where

Ani = {[|Zill2 < clog(n), [[Xil| 2 < clog(n), exp{na, (Wi)} < clog(n)}.

For any to, define p(Y; a) = [V;(to) exp{ma+ao (W;) } =V (to) exp{rna, (W;)}], Dn = {clog(n)}*d,",
and ¢, (Yj;a) = Dpp(Yj;dna)lya,,. Then |, (Yj;a1) — on(Yj;ao)| < ||@1 — olfe. Since

lalx < Mry, & € F,,, it follows from Lemma B.5 that with probability approaching to one,
n= 2 Z en(Vi; @) R, — Ben(Yi; @R, xS (/™ llall7 +n~ ") {h ™" loglog(n)}'/?

< (p/ @™ + 072 {h 7 log log(n) }'/2,

~Y
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where v = 1 — 1/(2m). On the other hand, by the Taylor expansion, the Cauchy-Schwarz

inequality, Lemma B.2 and Theorem 3.1, we have

| E{o (Y3 dud) R, 15, Ml < {B@(Y;sdnG) IS, [}/ Bl R, |3}
S(EY;(to) exp{nas (W)} (Rav,, @),12) 2l ?n1/2

1/4

PA ) E{1Z2 + 1] 2) YT A erh™ 2.

nj

S(ELY)(to) exp{1a,(W;)}]")
From Condition (C4), we can choose ¢ large enough such that
n 22 P(AG ) = g/ {h loglo(n)} 7).

Then
n'?| E{o(Y}; dud@) R, 15, Hix < pi/ ™ {h ™" loglog(n)}'/>.

n

Thus, on I',,, as n — oo, we have

n= 2D, |8 (e + ag) — Sulan) = {S(a+ ag) — S(ag)}Hix < o/ ™ {h~ loglog(n) }'/2.

(C.9)
For the left hand side of equation (C.8), we have
[Sna (@ 4 a0) = Spalao) — {Sx(a + ag) — Sx(o) }Ix
1 1
=] = Spa(ap) — DS\ () — / / sD*Sy (g + ss'a)aads ds' |
o Jo
11
:Ha — Spalag) — / / sD*Sy(ap + ss'a)aads ds' .
o Jo
1 1
2”04 = Sua(@)|lx =1 / / sD*Sy (g + ss'a)aads ds' . (C.10)
o Jo
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It follows from inequality (B.3) that

1l 1 1
H / / sD*Sy(ap + ss'a)aadsds'|| < / / s||D*Sy(ag + ss'a)aal|y ds ds’
0o Jo A 0 Jo

Sllalie*h=Y2 < 2], (C.11)
Therefore, it follows from (C.8)—(C.11) that
loe = Sna(@o)l[x < Oplan).

The proof of Theorem 3.2 is completed.

C.3 Proof of Theorem 3.3

Define 6, = (B 5, h9T2B,,.3), o = (id—Py)ag, o = (05, hoTY255), Rl = (H,, hetV/?T,),
and

n~t Z?:l yj (t) exp{nao (VVJ)}RW]
Y, D5 exp e (W)}

Rw, —

1 [T
~ *
Remn:an,)\—ao——g /
n 4 0
=1

It follows from Theorem 3.2 that ||Rem,||» = O,(a,). Thus, we have

i L T D0 e (W) A,
o=t 3 | [*‘Wi‘ n S, ;1) exp (W)} ]dNi(””?:O”(“”)'

] AN (t).

Define

Len [ S Vi) exp e, (W3} RY,
R h _ ~h _ xh = / Rh,— Ji] J dN;(t).
e = dun =i’ =2 ) [ W Ty el vy} |

Then it is easy to show that || Rem” —h**'/2Rem,, || = O,(ay). It follows from a,, = o(n~1/2)

that

Rem” ||y < |[Rem! — h*™Y2Rem, || + h*Y2||Rem,,||» = o,(n"?).
n n P
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Next, we will use Rem” to obtain the joint limiting distribution. The idea is to employ
the Cramér-Wold device. For any u = (2',t) € R? x I, we will obtain the limiting dis-
tribution of n'/2zT(6,x — 65) + n'/2hetV2{B, \(t) — Bi(t)}. Note that this is equivalent
to getting the asymptotic results about n'/? <7~2u, dfm — a(";h>A. It follows from Theorem
3.2 that n'/?| <7~€u, Rem2>/\ | = O, (n'/2h=(a+1/2)q ). Thus, we only need to get the limiting

distribution of

o <R%Z [ [% 0 exp{n%(vvj)}%j] dNi(t)> |

Y V() exp{a, (W)}

Direct calculations yield that

" < RIS [RW L0 exp{nao<wj>}7e’avj] . (S)>

PSS ) exb ()}
:n_1/2 Z/ [ZTHWz + ha+1/2TWi (t)
i=1 70

S () exp (g (W)} =T Huw, + he+ 2T (1)}
S () exp {1y (W)

=U,.

Define K;(u) = 2" Hy, + h**/2Tyy. (t). Therefore, we have

=n"'"Y Ui + 0,(1).
=1
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Direct calculations yield that

o [ e BV eplna (WG]
Var(l;) = E/O |:IC1() EY;(s) exp{na,(W;)} } anle)
_  p2atl ! _Eyj<5)eXP{77ao(Wj)}7TXj(t) : 1€
- 1 | [WW EY;(5) exp {1 (V,)) 1 )

F2h0 2 (7 — B2 TS — V(G G) 4+ V(G WL G)} !

T EY;(s) exp{na, (W) }mx, (t)
<o | {”Xf O = " E3,(5) exp {1 (W,)} }
EY;(s) exp{na, (W) H{Z; — V(G,7x,)}
EY;(s) exp{na,(W;)}
+(z — R 20 T{E - V(G,G) + V(G, W, G)} !

. EY,(5) exp{n (W) HZ, — V(G )} ]
<o | [{Zi‘V(G’”X"”‘ EY,(5) 05D (1on (1)) }

x{X = V(G,G) + V (G, W \G)} L (z — hat (1)),

X {{Zi —V(G,mx,)} — } dN;(s)

and

[ [t i@y - ER N, VG )

EY;(s) exp{na, (W;)}

EV,(8) explnn, W), (0 o
- {WX"(t) — EYi(s) exp{ia, (W)} } ANe)
= [ G G,
) §{1+Amh'(t>_<1+Apj)2hj(t)}
_ Z@Yﬁi) hy(t) = Whw(t).

1

J

Using the arguments similar to the proof of Theorem 3.1 in Cheng and Shang (2015), we

have h*1/2 5 0, w(t) = O(1), h2Waw(t) — 0, /a{f — o} — 0, and /rA* 2 {35(t) —
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Bo(t) + {Wx(Bo)}(t)} — 0. Then, as A — 0, we have

Var(Us) =0} +2(z +7) {5 = V(G,G)} & + (2 +70) {E = V(G G)} (= + )

=", 1)e(", 1",

It follows from the Lindeberg’s central limit theorem that

V(0.1 — bo)
Vrhh B (t) — Bo(t) + (W Bo) (to) }

— N(0,9).

Since n'/2hk1+%) = (1), we can get that nh** = o(1). Then, we have

. - 1/2 ‘ 1/2
bjAp; 2 2 j*
|(WxB0)( to|—‘§ 1+)\] ‘O‘SCV\{E bjpj} {§ (ESYSE
=1 =1

= O(ML™*1/2) = o(1).

Hence, it leads to /nh®Y/2{W,(By)}(t) = o(1). Thus, the conclusion follows directly.

C.4 Proof of Theorem 3.4

By Theorem 3.2 and the proof of Theorem 3.3, we have

n' 2R sup [ 5,(s) = Bols) = Sal@o)(s)] = 0,(1),

sel
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EV(t) exp{na, (W)} Tw (s)]
=N E[Y(t) exp{ra, (W)}]

L T (g ED@ sl WX
= K | ;W) E0 el ) MO

) M, (t)

—w(s){E - Q4+ V(G, WAGT)}*% > /OT{Z,- —V(G,7x,)} dMi(t)

=Sn1(0)(s) — Snz()(s)-

We will show the theorem through the following two steps.
(i) Denote H,(s) = vnhh®S,i(ag)(s). The first step is to show that H,(s) converges to
the Gaussian process G(t) in the Hilbert Space H(™ with the inner product V (-, -), where

hj,3 =1,2,..., are the orthonormal bases. Direct calculations yield

:hl/:a /K(s,u) /Ti <Xi<u) - B exp{nao(W)}X(U)]> AMi(t) du

B xben )]
s)pM/2te (T ) — E[YV(t) exp{na, (W)} X (u)] ‘ »
fz/ 2 (5 S ) 40

From Theorem 1.8.4 in van der Vaart and Wellner (1996), to prove that H,(t) converges
to the Gaussian process G(t) in the Hilbert Space H™, we only need to prove that H,(-)
is asymptotically finite-dimensional and V' (H,,, h;) converges in distribution to V(G, h;). It

follows from the definition of H,(-) that
0 0 hlt+2a
V(H,, h;) / /
S v =3 i {4 w

_E(t) exp{na (W)} X (u)] (1) du i
T e L)) PO } |
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It is easy to verify that
oo [ (e~ EDO epli (WX @]y
ﬁ;/ﬁﬂ( )| (ot - Sy 0

h1+2a -2a - 00 I2a
W = Jo e

is asymptotically tight and bounded by ¢j*. Besides, we have dr <

h1+2a]2a

co. Then for every € > 0, there exists Jy such that .. ;- o)

< ¢. Thus for any € > 0

and 0 > 0, we have

lim sup P (Z V(H,, hy)? > s) < 0.

" 7>Jo

Namely, H,, is asymptotically finite-dimensional.

Furthermore, it follows from the definitions of h; and V(-,-) that

| pl/2+a (u) — E[YV(t) exp{na, (W)} X (u)] ) du
V(1) = (a0 {IZ/ 9 J, (%00 = e WM“”}

d h1+2a

Following the lines of the proof of Karhunen-Loéve theorem (Alexanderian, 2015), we

can get that

h1/2+a
=S .t
g() Z(1+)\p])77] J( )7
where 7;,j = 1,2,---, are i.i.d standard normal random variables. Thus, V (G, h;) follows
N(0, %) From equation (C.12), we have that V(H,,h;) converges in distribution to
V<g7 hj)'

(ii) The second step is to show that \/nh'/2tS,5(ag)(s) converges to zero in probability
uniformly in s. It follows from the arguments in Cheng and Shang (2015, page 1379, lines 5—

11) that w(s) = O(1). Besides, since h — 0, {¥ — Q + V(G,W,\G")}' — {£ - Q} 1,
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and n~ V23" | [T{Z; — V(G,7mx,)} dM;(t) converges to a normal distribution, we have
hat12, /nS,a(ao)(s) == 0 uniformly in s.

Combining (i) and (ii) yields the conclusion of the theorem.

C.5 Proof of Theorem 4.1

Define o = @, \ — ap. It follows from Theorem 3.1 that for some M > 0, |laf|y < Mr,
with probability approaching to one. Therefore, we can assume |||y < Mr,. By the Taylor

expansion, we can get that
1 1
lna(g) = lua(Gnn) = =Spa(Gnn)a + / / $DS, A (G — ss'a)aads ds’
o Jo
1 1 1
:/ / ${DS, \(dtnr — ss'a) — DS, x(ap) o ds ds’ + §D8n,,\(040)0404. (C.13)

o Jo

It follows from Lemma B.1 that
1 1
Lna(co) = Lua(Gnn) :/ / S[DS, (G ) — ss'a) — DS\ (ap)]aavds ds’
o Jo

1 1
+ §[D8n7,\(0z0) — DSy ()] — §||04H,\

1
E[l + IQ — 5”0{”)\
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To get the order of I;, we define o/ = &, — ss'a — oy = (1 — ss')a, where 0 < s5,5" < 1.

Direct calculations yield that

I[DSpx(Gnp — s5'a) — DS, 1 (ap)]aa| = | DS, A(ap + da’ )|
1 1225 YiYa) exp{na (W)) }na(Wi)na(W;)na (W))
= ‘ﬁ;Al[ nSfO)(YQ,ozo)
22 Yi(Ye) exp{ e (W5) 1 (W) 1 (W5) 325 V5 (YV2) expf{nag (W) s (W)
S (V;, )2
Ly > Vi(Ys) exp{na, (W;) }na(Wi)na (W) 32, Vi (Y:) exp{na, (W) }na (W)
St (Y, o))
N 2{Zj V;(Yi) exp{nao (W) }na(W5) 12 3=, V5 (Y3) exp{nao(‘%)}w(%)} ‘
St (Vi a0)?
> Yi(t) exp{na, (W) }na(Wi)na (W) na (W)

nSgO) (tv Oéo)

< sup
tel

sup > Vi (t) exp{na, (W) }na (Wi)na(W;) 22, V;(Ys) exp{na, (W) }nar (W) ‘
tel {nsgo) (t, ) }?
+ 2sup > Yi(t) exp{na, (W) }na(W;)na (W;) 32; V5(t) exp{na, (W;) }na(W;) ‘
tel {nsgo) (t, ) }?
{32, Y5(8) exp{nae (W) }na (W) }2 32, Vi (t) exp{nae (W;) }iar (W)
s ) (¢, ao)]?

= I + Lo + Lz + L,
where 0 < 9 < 1. Define I' = N | A,,;, where

Ani = {||Zil]2 < clog(n), || Xi||2 < clog(n), exp{na,(W;)} < clog(n)}
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for a constant c. For I, we have

nt 370 Vi) exp{nae (W) 11a (W) na (W) 1ar (W)
(0)(t 060)
’n‘l D1 €XP a0 (W) e (W) )na (W;)nw (W)

s (r, )

<— \Zexp{nao D10 (W )16 (W) [ R 1

nsl (T, ap)

Iy = sup
tel

<

ns; (7, ap) =

Mr, -
< \<Zexp{nao<wj>}na<wj>|mwj||ARWJ.,a> |
A

Let d, = kMh~2¢ )y, and & = d; ', where & is given in Lemma B.3. Note that & € F,,,

where p, = k7 2h?%t1=2F > 1 for large enough n. Denote

Xp {11y (W) }1a ()
V3c {clog(n) P h-@1/2)

Then it can be shown that
|¢n(maAi7 VVlvdl) - ¢n(}/;7Ala WudZ)’ S Hél - d?He-

It follows from Lemma B.5 that with probability approaching to one,

‘ A

|72 [exp mas (W3) s (W) [ Ruw, [ R, L, — B ex{mag (W) (W) [ Rav, 3R, L, ]

j=1

<p/ U™ {h " loglog(n)}'/*{clog(n) }*h(@+1/2).

Therefore, we have

Hzexp{nao D0 (W[ Ruwy 1R, Lay = B exp{iiag (W) a (W) [ Ros 3R, L, )|

1/2 1/ (4m) {h 1loglog( )}1/2{clog( )}3 a+1/2 n

:c3Mrnn1/2/€1_1/(2m)h_(2a+3/2)+(2“+1_2k)/(4m){log(n)}S{log log(n)}l/Q.
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It follows from the Cauchy-Schwarz inequality, Lemma B.2, and Lemma B.4 that

| Elexp{na, (W) }na (W) | Rw, 1 (Rw;» o),

1/2

< (Blexp{na, W)}?) *LE|Rw |2 HE (Ru,, a) 312

< (Elexp{na, (W) 1) 2v/eh™ 24 [lall
1/2

< (Elexp{na, (Wi)}1*) "h 2 M2

Thus, with probability approaching to one,
‘111’ S (Tzn71/2h*(2a+3/2)+(2a+172k)/(4m){log(n)}?){log log(n)}l/2 + hfl/ZT,ZTSL)_

Similarly, we can prove that

L1y = O, (1312~ Cat3/2+Cat1=20)/(4m) {166 (n)}3{log log (n) }/2 + h~Y/23),

L3 = O, (1312~ Cat3/2+ et 1-28)/(4m) {166 (013 {log log (n) }/2 + h~Y/23),

Ly = O, (r3n=1/2p~Rat3/2+2a+1=28)/(4m) [0 (n) }3{log log(n) }/2 + h=Y/2r3). Therefore, we

have
Il _ Op(rinfl/th(2a+3/2)+(2a+172k)/(4m){lOg<n)}3{10g log(n)}1/2 + h71/2r2) _ Op(nflhfl/Q)'
It follows from equation (C.7) that

2|I5| = |[DSn(an) — DS\ ()]

2k—2a—1

= Op<n—1/2h—(a+1)— T {log(n)}Q{loglog(n)}mri) _ op(n_lh_1/2).

Therefore, we have

—2nPLRT, 5 = n||Gn — ol + o, (h"?).
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It follows from Theorem 3.2 and n'/?a, = o(1) that

—2nPLRT, » = n[Saa(a0) [3(1 + 0,(1)) + 0, (h71).

Direct calculations yield that

nl|Sna(@o)13

2

:_HZ / R, - R lyjé(z)ixp{za‘)( j)}RWJ’] dM; (1) — Proo |

S [ [ - T R

_2<Ezl/o ['RWZ.— - ijlyj( )exp{ﬁao( )} W]dM( ) 73/\a0> +n|]73>\a0|]§\

S§0) (t7 aO) A

Ejl + JQ + Jg.

For J; and Js, it follows from Condition (C1) that

7 :l Z/ RW B 7123 Yt )exp{naO(Wj)}ij]dMi(t)

2

n SO, ap) A
:% z; /0 [Rwi— EY( )e}%){(z%a(o) ~)}ij] ML) i Oy (n—th12)
and
(35 o - B s )
. <% ; /OT R, - EY;(t )e:gI;){(ZTjO) i)} Rw, ] i), 7))\050>>\‘
. < %; /O :Eyju)ex(lg){(za;(:f-)}nwj o Z?zl%gg)i’j;’;o< IR ] an(e), PWO>A]
) <%Z / :Rwi—Eyj()e:g%{(ZT;(O) )}RW} . mo> [+ Oyl ) P
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Denote fy = >, bsh;. Since J(Bo, fo) = >, b3p; < 00, and A = o(1), it follows from the

Lebesgue dominated convergence theorem that

(£ - g o)

/OT { /H (X (t) — E{X()|T = v,A = 1}JW\(Bo)(t) dt} V() exp{na, (W)} ho(v) dv]

2

A

=nkF

VO (o). WA () < W)l = 3 By 2 = o)

Therefore, we have Jy = 0,((nA\)/2)(1+(nh)~Y2) = 0,((n\)'/?). Note that J3 = n||Prayl|? =

n||[Wi(5o)||%, = o(n)). Therefore, we have

=l Z/ BO DU TNRLY ans o)+ mllwa 8o, + 0p(h7).

SEO) (ta Oéo)

Define R;(t) = Rw, — E[V;(t) exp{na, (Wj)}RWj]/sgo) (t,p). To get the asymptotic results
of —2nPLRT,, ), we only need to figure out the properties of

%Hz:/; Ri(t) dM; Z/ / ), dMi(t )dMi(3)+% Wi,

1<i<j<n
where Wiy = 2 [ [ (Ri(t), R;(s)), dMy(t) dM;(s). Write W, = 37, .., Wi;. So, W, is
clean (Jong, 1987). Next, we aim to derive the limiting distribution of W,. Let o2 =

Var(W,). Then

o2 = ”<”2_1)E(W) n(n — 1)E {// dM()de(s)}2

oo 1 -

=1

)
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Define F}, F», and Fj as follows:

P =Y BOWY), Fr= Y {BOVZWi)+ EWAWE)+ BOVEWE)},  and
i<j i<j<k
Z {E(WiWuyWi;Wi,) + EWi;WyWieiWi) + EWuWaWiu W)}
1<j<k<l

By Proposition 3.2 of Jong (1987), if I, Fy, F3 are all of lower order than o2, then o, W,
converges weakly to the standard normal distribution. Now, we study the order of each

F;,i=1,2,3. First, observe that

_16E{ / / dM()de<s>}4
16 / / / / / / / / Ry(s0))y (Rilta), Ry(s2)), (Ralts), R (s9)),

(Ri(ts), Bj(s4)), { dAM; (1) dM; (s1) dM;(tz) M, (sy) dMi(ts) dM;(s5) dMi(t) de(s4)}
= O(h™),
which implies F; = O(n?h™). Next, by the Cauchy-Schwarz inequity,
EWiWR) < {BEW )Y H{EWi)}? = 0(h™),
which yields Fy = O(n3h™*). A straightforward calculation yields that
E(Wi Wi Wi W) ~ 162 T Apj O(n™).

Therefore, F3 = O(n*h~!). Combining the fact that o} = (¢2)> = O(n*h™?) with the
assumptions that nh? — oo and h = o(1), Fy, Fy, Fy are of lower order than that of ol.

Hence, by Jong (1987), o'W, —% N(0,1) as n — oo. Recall that p2 = Do h/ (1 + Apj)?.

We have

W, - N(0,1). C.14
NI (0,1) (C.14)
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Lastly, we consider n=* " | [ [ (Ri(t), Ri(s)), dM;(t) dM;(s). Through direct calcula-

tions, we can obtain that

{/ / ) dMi(t )dMi(s)}Q:O(

{ // dM()dMi(s)_h—lai_l}z
: ”E{// dM()dMi(S)}ZZO(nh_Q),

where 0% = 372 h/(1 4 Ap;). Combining these gives

AR} = O(h™).

Then,

/ / )\ AMi() dM(s) = 1+ h o2 + O {(n?h) '}, (C.15)
By (C.14) and (C.15), we have n||S,.(ao)||? = O,(h™!) and therefore n'/2||S, x(ap)|[x =

O,(h=?). As a result,
—20PLRT 5 = {n"2]Su(@0) n + 0p ()} + 0,(h/2) = nl|Surlao)l2 + 0,(h~/2).(C.16)
In view of (C.14), (C.15) and (C.16), we conclude that as n — oo,
(20710} p3) " { =20 PLRT, » — nys[WaBo(D) |3 — h7'0%/p3} = N(0,1).

The proof of Theorem 4.1 is completed.

C.6 Proof of Theorem 4.2

Throughout this proof, we only consider «,, = ay + «, for oo, € A in H;. To prove the

theorem, we write

—2n - PLRT, » = —2n{l, (o) — lux(ong)} — 2n{lyx(any) — laa(Gnn)} = L + L. (C.17)
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We first consider ;. For simplicity, we denote

Ry = Aj |1, (W;) — log — Zyj ) exp{na, (W, >}]

— A Doy, (Wi) —log — Zyj ) exp{na,,, (W )}]

g S 0 b s V) 1) |
/ e ) S S @) 50y 0, (V) ]W“
T BV, 0) X0, (V) 1, W)
/o:”a"(w”‘ T e A
[ [ B2 sl Vi ) B8t 08 s 01
o | S V0 e (V)] 1) 0 (g 0, (V)]

T 0 DUy s ) e, (1) .
= [ [ty - B Retes CL L) 5,0+ 0 ),

dN;(1)

where 0 < s’ < 1. Then

EU¥P<EA%MH%JWWT:@A:1DWVWK%JWH%@W#:OW%M)

Therefore, we can get

8

Combining these gives

n

> (R - ERy)

i=1

} < nE{R?} = O(nHan”i)

1l (00) = lna(eng) = E{lna(o) = loa(omg)}] = Op(n'?[lov ).
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On the other hand, since DS (a)a,a, < 0 for any a € H, there exists a constant ¢ > 0 such

that {DSx(ak, )} < {DSN(ang)onan} = —cl|ay||3. Then, we have

E{ln,A(QO) - ln)\(ano)} =F {Sn,A(ano)(_an) + %DSH,)\(QZO)QTLQ”}

cllam |3
2

_ laal3
2

< A (g ) < A{J (o, o) + J(vp, an) } —

1/2 1/2 cllanll3
S {J(ana an) + J(QOa aO) J(O[n, an) } - T

_ a3

= o) -4

It then follows that
It > nf|ag |} + Op(nA + n'?[lanlln) = nllon|3{1+ Op(Mlanlly® + 77 2 [lanl[; 1)} (C.18)

Second, we consider ;. Under the alternative hypothesis, ||, — || = O,{(nh)~Y/2 +

h*} . By the joint functional Bahadur representation given in Theorem 3.2, we have

inf inf P, (||Gnr — ng — Snalm)|x < Mry,) — 1, (C.19)

n>Naned "0
where 7, = (nh)~'/2 + h*  and P,,, means that the probability relies on «ay,. Note that
under the alternative hypothesis Hi,, I is the same as (C.13) except one constant term
—2n. Along the lines of Theorem 4.1, we can show that I5 has the same limiting distribution
as given in Theorem 4.1, uniformly for any «, € A. In other words, uniformly over all

a, € A,

(20n0) "2 (L2 = nl|WaBuo 17, — B 107, 1) = Op(1), (C.20)

nQg,A

2

no,A\

— 14 2
where vy, = h™ 0, \/pn s O

and p7 , are defined as the same as 03 and p3 but with

eigenvalues and eigenfunctions obtained under ay,,. Next, let V., (f,g9) = [; [; Fo,, (s,t)f(t)g(s)dtds
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and Vo(f,9) = [} J; Fao(s,1) f(t)g(s) dt ds, where F,(s,t) = F(s,t), while F,, (s,t) has the
same formula as F, (s, t) but replacing aq with a,,. Thus, for any f € H™, there exists a

constant ¢ such that

Voo (fs f) = Vo(f. f)] = Fo,y(8,1) = Fou (s, O] f)f(s)dtds

< Bl exp{an(W)}HooVo(f, Hllanlleo = Vol f, fllanl|oo-

It follows from the Supplementary Material (page 56) of Shang and Cheng (2013) that

o2 = o3 = O(h~@T2|a,ly). (C.21)

oA
Combining (C.18), (C.20) and (C.21) gives
(20,) Y2 (=2nr\PLRT .\ — vp) = (2v0) V=1 (11 + L) — vy}
=(2v) " Pra(I2 — nf|Prang} — bt ) + (2va) " 2ran][PaanolI3
+ (2v,) V20 + (2u,) Y2 rah T (02 Taix—03)
>0,(1) + (2va) " Pranllanl3{1 + Op(Allan |3 + 1072l )}
+O(h™227 a1,
where O,(1) holds uniformly in A, v, = h™'o}/p3, and r is defined in Theorem 4.1. Let
Monll3* < 1/e, n7Van|" < /e, ch™272 an ||y < nlla|3, and [lan[|X > c(nh!/?)~" for
a sufficiently small constant c¢. In other words,
|(20,) " Y2(=2n7\PLRT,, » — )| > ca,

where ¢, is the critical value (based on N(0,1)) to H"*" at nominal level .. This leads to

loal3 2 {R* + (nh'7%)~13. (C.22)
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Combining (C.19) and (C.22), we complete the proof of Theorem 4.2.
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