
Supplement to “Individualized Multi-directional Variable

Selection”

This supplementary note collects auxiliary lemmas, detailed proofs for the theorems and corollaries in Section 3
(Appendix A), and additional numerical analyses (Appendix B).

A Supplementary Materials to Section 3: Theory

A.1 Some Notation and Matrix Algebra

(N1). Denote a ∧ b = min(a, b).

(N2). Define “ ◦ ” as the Hadamard product, that is, for two matrices, A and B, of the same dimension m × n, then
A ◦B is a matrix, of the same dimension of A and B, with elements given by (A ◦B)ij = Aij ·Bij .

(N3). Define the order between two n × n square matrices as A > B if ∀x ∈ Rn, xTAx > xTBx holds. Let
A � B denote c1A ≤ B ≤ c2A for some constants 0 < c1 ≤ c2 <∞. Define a sequence of m×m matrices
An asAn = O(n) if c1nIm ≤ An ≤ c2nIm when n is large.

Next, we provide some useful results as well as the proofs for some matrix algebra. For two square matrices A
andB with the same dimension,

(M1). AB andBA have the same non-zero eigenvalues.

Proof: For any eigenvalue λ ofAB, there exists a non-zero vector µ such thatABµ = λµ. It implies thatBABµ =

λBµ. LetBµ = µ∗ and we haveBAµ∗ = λµ∗ indicating that λ is also an eigenvalue ofBA.

(M2). IfA andB are non-singular andA ≤ B, for any matrix C, we have CTAC ≤ CTBC, andA−1 ≥ B−1.

Proof: Note that A ≤ B is equivalent to xTAx ≤ xTBx for any vector x. ∀ x, denote Cx = x∗ such that
xTCTACx = (x∗)TAx∗ ≤ (x∗)TBx∗ = xTCTBCx, implies CTAC ≤ CTBC.

It is trivial that if A ≥ I , then we have A−1 ≤ I . Hence, A ≤ B ⇒ B−
1
2AB−

1
2 ≤ I ⇒ B

1
2A−1B

1
2 ≥ I ⇒

A−1 ≥ B−1.

A.2 Regularity Conditions

We require some common regularity conditions for establishing theoretical results in Section 3.

1



(A1 ) The unknown parameter (γ′,α′)′ belongs to a compact subset B ⊆ Rp+q and its true value lies in the interior
of B;

(A2) DN,m andHN,m are positive definite when N or m is large.

(A3) There exist νl > 0, ν′l > 0, such that λmin(R0
i ) > νl and λmin(Ri) > ν′l for all i andm; and tr(R−1i ) = O(m).

(A4) X̃ij = (X ′ij ,Z
′
ij)
′
(p+q)×1 belongs to a compact set X ⊂ Rp+q for 1 ≤ i ≤ N and 1 ≤ j ≤ m;

(A5) Let X̃i,k denote the kth column of X̃i, assume ‖X̃i·,k‖22 = Op(m) and
∑N
i=1m

−1‖X̃i·,k‖22 = Op(N), for
1 ≤ k ≤ p+ q;

(A6) m−1λmin(XT
i Xi) > c3 for any i and 1

Nmλmin

(∑N
i=1Z

T
i (Im −HXi)Zi

)
> c4,

whereHXi = Xi(X
T
i Xi)

−1XT
i , for some constants 0 < c3 <∞, 0 < c4 <∞ .

Conditions (A4)-(A6) are regularity conditions which are typically required for the bounded regressors. However,
these are less restrictive than other assumptions, e.g., 1

mX
T
i Xi converges to a positive constant matrix. Note that

condition (A6) allows within-individual invariant covariates, and is less restrictive since it does not require X̃T
i X̃i to

be positive definite.

A.3 Proof of Lemma 1

For an estimator θ̂ obtained by solving the estimating equation GN,m(θ) = 0 in (7), under regularity condition (A2),

by Taylor’s expansion, we have (θ̂u−θ0) = −D−1N,mGN,m and thusH−
1
2

N,mDN,m(θ̂u−θ0) = −H−
1
2

N,mGN,m, where
GN,m = GN,m(θ0).

By the Chebyshev inequality,

P

(
p
− 1

2

θ ‖H
− 1

2

N,mDN,m(θ̂u − θ0)‖2 > δ

)
= P

(
p
− 1

2

θ ‖H
− 1

2

N,mGN,m‖2 > δ

)
≤ p−1θ δ−2E(‖H−

1
2

N,mGN,m‖22)

= p−1θ δ−2E(tr(H
− 1

2

N,mGN,mG
T
N,mH

− 1
2

N,m))

= p−1θ δ−2tr(H
− 1

2

N,mE(GN,mG
T
N,m)H

− 1
2

N,m)

= p−1θ δ−2tr(H
− 1

2

N,mHN,mH
− 1

2

N,m) = δ−2.

Furthermore, noting that ‖H−
1
2

N,mDN,m(θ̂u − θ0)‖2 ≥ λmin(DN,mH
−1
N,mDN,m)

1
2 ‖(θ̂u − θ0)‖2 and thus

P

(
p
− 1

2

θ ‖(θ̂
u − θ0)‖2 > δ

)
= P

(
p
− 1

2

θ λmin(DN,mH
−1
N,mDN,m)

1
2 ‖(θ̂u − θ0)‖2 > λmin(DN,mH

−1
N,mDN,m)

1
2 δ

)
≤ P

(
p
− 1

2

θ ‖H
− 1

2

N,mD
1
2

N,m(θ̂u − θ0)‖2 > λmin(DN,mH
−1
N,mDN,m)

1
2 δ

)
≤ λmax(DN,mH

−1
N,mDN,m)−1σ−2.

As λmax(DN,mH
−1
N,mDN,m)→∞, we have P

(
p
− 1

2

θ ‖(θ̂u − θ0)‖2 > δ

)
→ 0. �
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A.4 Proof of Theorem 1

Let X̃i = (Xi,Zi) and ω̃i = (ω′i,1
′
q)
′, and X̃or

i = X̃iΩ̃i where Ω̃i = diag(ω̃i).
We denote Hor

N,m =
∑N
i=1(X̃or

i )TV −1i ΣiV
−1
i X̃or

i , Dor
N,m =

∑N
i=1(X̃or

i )TV −1i X̃or
i , and Lemma 1 directly

applies for the oracle estimator by replacing HN,m and DN,m with Hor
N,m and Dor

N,m, respectively. Let θ̂or =

vec(γ̂or, α̂or) and θ̃0 = vec(γ0,α0), according to Lemma 1 we have

(Hor
N,m)−

1
2 (Dor

N,m)(θ̂or − θ̃0) = Op(1). (A.1)

Note that the divergence rates of Hor
N,m and Dor

N,m are associated with the subpopulation size |Gk|’s as N goes to
infinity. However, in contrast to other clustering approaches based on an entire set of coefficient vector βi (e.g., [9, 7]),
the proposed model allows the subgroup partitions corresponding to different individualized predictors to be different.
Therefore the design matrix for the oracle estimator here cannot be formulated as a block diagonal form, which leads
to non-trivial subgroup effects on divergence rates.

To get a better understanding of the group effects on the oracle estimator, we reformulate
Dor
N,m =

∑N
i=1 Ω̃T

i X̃
T
i V

−1
i X̃iΩ̃i =

∑N
i=1(Ω̃iΩ̃

T
i ) ◦ (XT

i V
−1
i Xi), where Ω̃T

i Ω̃T
i is a symmetric square matrix

with entries to be zero or one. Suppose there are some positive constant sequences {κlm}∞m=1 and {κum}∞m=1 such that

κlm ≤ λmin(X̃T
i V

−1
i X̃i) ≤ λmax(X̃T

i V
−1
i X̃i) ≤ κum, 1 ≤ i ≤ N,

then we have κlm
∑N
i=1 Ω̃i ≤ Dor

N,m ≤ κum
∑N
i=1 Ω̃i by noting Ω̃2

i = Ω̃i. Similarly, we could also show that
φlm
∑N
i=1 Ω̃i ≤ Hor

N,m ≤ φum
∑N
i=1 Ω̃i for some positive constant sequences {φlm}∞m=1 and {φum}∞m=1. Let ΛN =∑N

i=1 Ω̃i and note that ΛN = diag(N1′q, |G1|, . . . , |Gp|) is a diagonal matrix, where |Gk|’s (1 ≤ k ≤ p) are signal-
subgroup sizes corresponding to p individualized predictors, respectively. Since

∑N
i=1 Ω̃i is non-singular, then

(φum)−1(κlm)2ΛN ≤Dor
N,m(Hor

N,m)−1Dor
N,m ≤ (φlm)−1(κum)2ΛN . (A.2)

The bounds in (A.2) provide the convergence rate for the oracle estimator. It is clear that ΛN contains the subgroup
effects on estimation, while (φum)−1(κlm)2 and (φlm)−1(κum)2 reflect the information accumulated from the increasing
individual-wise measurements. For example, in the independent-error model, it is straightforward that κlm, κum, φlm
and φum are all of order Op(m) under the regularity conditions.

Let Nk =
∑
i∈Gk mi = m|Gk| denote the number of observations in group Gk and Na =

∑N
i=1mi = mN denote

the total number of observations. For the independent-error model, we establish asymptotic normality for the oracle
estimators with convergence rates associated to the sample size N and the individual measurement size m.

Following the matrix algebra in Section A.1, we have

(φum)−1(

N∑
i=1

Ω̃i)
−1 ≤ (Hor

N,m)−1 ≤ (φlm)−1(

N∑
i=1

Ω̃i)
−1,

and therefore (A.2) holds.
Recall that θ̂or = vec((γ̂or, α̂or), by Taylor’s expansion, we note that (θ̃or − θ̃0) = −(Dor

N,m)−1Gor
N,m =

−(Hor
N,m)−1Gor

N,m, where

Gor
N,m =

N∑
i=1

X̃T
i V

−1
i (yi − X̃iθ̃

0),

since R0
i = Ri = Im holds for any i. By the standard central limit theorem, we have (Hor

N,m)−1/2Gor
N,m →

N(0, Ip+q), implying that (Hor
N,m)1/2(θ̂or − θ̃0) → N(0, Ip+q), as either m → ∞ or min1≤k≤p(|Gk|) → ∞. In

addition, if R0
i 6= Im but m is bounded, then the asymptotic normality still holds when N goes to infinity regardless

of the choice of working correlation matrixRi.
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Moreover, under regularity conditions (A5)-(A6), we have λmin(
∑N
i X̃

T
i X̃i) = O(mN) and

λmax(
∑N
i X̃

T
i X̃i) = O(mN). WhenR0

i = Ri = Im, it is trivial thatHor
N,m = Dor

N,m � mΛN,m = MN,m. �

A.5 Proof of Theorem 2

Following Lemma 1, we have

P

(
(p+ q)−

1
2 ‖(Hor

N,m)−
1
2Dor

N,m(θ̂or − θ̃0)‖2 > δ

)
< 1

δ2 .

Note that

HN,m =

N∑
i=1

UT
i V

−1
i ΣiV

−1
i Ui

=
N∑
i=1

UT
i V

−1/2
i V

−1/2
i ΣiV

−1/2
i V

−1/2
i Ui

≤ λmax(R
−1/2
i R0

iR
−1/2
i )

N∑
i=1

UT
i V

−1/2
i V

−1/2
i Ui

= λmax(R−1i R
0
i )DN,m = ηmDN,m.

Therefore we haveDN,mH
−1
N,mDN,m ≥ η−1m DN,m, which implies that

‖(Hor
N,m)−

1
2Dor

N,m(θ̂or − θ̃0)‖2 ≥ η
− 1

2
m ‖(Dor

N,m)
1
2 (θ̂or − θ̃0)‖2,

and thus

P

(
η
− 1

2
m ‖(Dor

N,m)
1
2 (θ̂or − θ̃0)‖2 > δ

)
< c0

1

δ2

for some c0 > 0. The proof of Theorem 2 is completed. �

A.6 A Few Remarks and Conclusions on Divergent Correlation Structure

Remark A.1. For any N and m, according to regularity condition (A3), note that

ηm ≤ ( min
1≤i≤N

{λmin(Ri)})−1 max
1≤i≤N

{λmax(R0
i )} ≤ (ν′l)

−1tr(R0
1) ≤ (ν′l)

−1m.

Ifm is bounded, then ηm is bounded, which implies that the condition C∗a does not depend on unknown true correlation
structure R0

i . As N → ∞, we have λmin(Dor
N,m) → ∞ regardless of the choice of working correlation Ri. Hence,

similar to standard results for the GEE estimator, the oracle estimator θ̂or has asymptotic normality, although it may
not achieve optimal efficiency ifRi 6= R0

i .

Remark A.2. If m → ∞, ηm is not always bounded. For example, if R0
i admits an Exchangeable correlation

structure and we choose working correlation Ri as an identity matrix, we have ηm = O(m). For any bounded N ,
Dor
N,m = O(m), which implies that the condition (C∗a) fails. Although the condition (Ca) may still hold with some

constraints on the design matrix to ensure consistency (see following Example A.1),
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We use the following example of a simple linear regression to illustrate some details about the conditions Ca and
C∗a with specific covariates design.

Example A.1. Consider an individual-wise model with homogeneous effect,

yit = xitβ + εit, i = 1, . . . , N ; t = 1, . . . ,m,

where εi = (εi1, . . . , εim)′ ∼ N(0, σ2R0) and R0 admits an exchangeable structure with parameter ρ > 0, xij’s
are iid N(µ, 1). For the case of bounded N , without loss of generality, we assume N = 1. By using an independent
working correlation Ri = Im, we have Dm = xT1 x1 = O(m) and ηm = λmax(R0) = mρ + 1 − ρ, where
x1 = (x11, . . . , x1m)′. Thus condition C∗a fails. However, note that R0(ρ) = (1 − ρ)Im + ρ1m1Tm. We have
Hm = σ2xT1R

0x1 = σ2xT1 ((1−ρ)Im+ρ1m1Tm)xT1 = σ2(1−ρ)xT1 x1+mρ(m−
1
2

∑m
i=1 x1t)

2 = O(m)+O(m) if
µ = 0, and thus λmin(DmH

−1
m Dm) = O(m)→∞ asm→∞. But if µ > 0, it is clear thatmρ(m−

1
2

∑m
i=1 x1t)

2 =

O(m2) and thus λmin(DmH
−1
m Dm) = O(1).

Under mild conditions on correlation structures, we have a simplified result for the oracle estimator with subgroup-
ing effects with correlated data as follows.

Corollary A.1. Suppose ηm ≤ C1 holds uniformly for some constant 0 < C1 < ∞, under regularity conditions, we
have

‖M
1
2

N,m(θ̂or − θ̃0)‖2 ≤ Op(1),

whereMN,m is defined in Theorem 1.

Proof: Following the proof of Theorem 2, if ηm ≤ C1 holds uniformly for some positive constant C1, it is straight-
forward that ‖(Dor

N,m)
1
2 (θ̂or−θ̃0)‖2 = Op(1).Note thatDor

N,m =
∑N
i Ω̃iX̃

T
i R
−1
i X̃iΩ̃i and X̃T

i R
−1
i X̃i � X̃T

i X̃i

according to the regularity conditions. Following the similar argument in Section A.4, we have Dor
N,m �MN,m and

thus ‖(MN,m)
1
2 (θ̂or − θ̃0)‖2 ≤ Op(1). The proof of Corollary A.1 is completed. �

The condition of uniformly bounded ηm in Corollary A.1 naturally holds when m is bounded. However, when
m goes to infinity, it implies that either we choose a working correlation matrix Ri close to the true one, or the true
correlation is not too strong. The first case involves a consistent and efficient estimator of the correlation structure,
which has been discussed in [1], [5] and [4]. For the second case, a variety of conditions can be imposed on the
correlation structures to ensure a “weak” dependency. In the following, we provide a sufficient condition which can
be verified easily in practice.

Proposition A.1. Under regularity condition (A3), for any arbitrary true correlation matrixR0(ρij), if |ρij | ≤ ρ|i−j|
for i 6= j and

∑∞
k=1 ρk <∞, then ηm = max

1≤i≤N
{λmax(R−1i R

0)} is bounded uniformly for any working correlation

structuresRi’s.

This indicates thatR0 is bounded if the within-individual correlation decays rapidly as m increases. In practice, a
wide family of correlation structures satisfy the conditions in Proposition A.1 including the AR-1 and the M-dependent
correlation matrices.

Proof: The correlation matrixR(ρij) is symmetric, which implies that ‖Rm×m‖1 = ‖Rm×m‖∞ ≤
∑m−1
k=0 |ρk| <∑∞

k=0 |ρk| < ∞. By noting that ‖Rm×m‖22 ≤ ‖Rm×m‖1‖Rm×m‖∞, we have λmax(R) = ‖R‖2 uniformly
bounded, and thus ηm ≤ (ν′l)

−1∑∞
k=0 |ρk| <∞. The proof of Proposition A.1 is completed. �
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A.7 Preparation to Theorem 3

A.7.1 Convergence Rate of Individual-wise Unpenalized Estimator

In general, the unpenalized heterogeneous estimator plays an important intermediate role in investigating the large
sample theory of the penalized estimator. Hence, prior to presenting the theoretical results for the proposed estimator,
we discuss the asymptotic behavior of the divergent-dimensional individual-wise least squares estimator θ̂u(N) =

vec(β̂u(N), α̂
u) obtained by minimizing LN,m(θ) in (4).

Note that, for the proposed estimator and the individual-wise heterogeneous estimator, each term ofUT
i V

−1
i Ui in

DN,m does not equal to XT
i V

−1
i Xi , but is a block sparse matrix as µi(α,βi) does not contain any other individu-

alized parameter βj for j 6= i. We denote

DN,m =

(
Dxx(Np×Np) Dxz(Np× q)
Dzx(q ×Np) Dzz(q × q)

)
,

for the individual-wise estimator, where Dxx = bdiag
(
{XT

i V
−1
i Xi}Ni=1

)
and bdiag(·) denotes a block-diagonal

matrix. Similarly, we haveHxx = bdiag
(
{XT

i V
−1
i ΣiV

−1
i Xi}Ni=1

)
inHN,m, and bothDxx andHxx will expand

as N increases. Following Lemma 1, we obtain the following result:

Lemma A.1. Under regularity conditions, for any δ > 0 and a ∈ RNp+q , we have

P
(
|aT (θ̂u(N) − θ

0
(N))|

2 > δ

)
≤ δ−2aT (Ds

N,m(HN,m)−1Ds
N,m)−1a.

If we choose a as a coordinate indicator for βi in θ(N), that is, a = (0′q,a
′
1, . . . ,a

′
N )′, where aj ∈ Rp, 1 ≤ j ≤

N , aj = 1p if j = i or aj = 0p if j 6= i, Lemma A.1 implies the following corollary, which provides a detailed view
of the convergence property for each individual-wise estimator β̂ui and the population-shared estimator α̂u.

Corollary A.2. Under regularity conditions, for any δ > 0 and individualized estimator β̂ui ,

P
(
‖β̂ui − β0

i ‖2 > δ

)
≤ pδ−2ηmλmin(DXi

)−1,

whereDXi = XT
i V

−1
i Xi, i = 1, . . . , N , and for the population-shared estimator α̂u,

P
(
‖(α̂u −α0)‖2 > δ

)
≤ qδ−2ηmλmin(DZ)−1,

whereDZ =
∑N
i=1Z

T
i V

−1
i Zi.

Note that the condition (Ca) requires that m → ∞. In the case of bounded m and diverging N , it is straight-
forward that the consistency of any individualized parameter cannot be achieved since λmin(DXi) does not diverge.
Intuitively, the increasing number of individuals does not accumulate additional information for the individual-wise
parameters. However, the estimator of population-shared parameter α̂ could still be consistent as N → ∞ by noting
that ηm is bounded and λmin(DZ)→∞.

A.7.2 Proof of Lemma A.1 and Corollary A.2

Note that, for the proposed estimator and the individual-wise least squares estimator, each term of UT
i V

−1
i Ui in

DN,m does not equal to XT
i V

−1
i Xi , but is a block sparse matrix as µi does not contain any other individualized

parameter βj for j 6= i. We denote
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DN,m =

(
τxx(Np×Np) Dxz(Np× q)
Dzx(q ×Np) Dzz(q × q)

)
,

for the individual-wise estimator. Specifically,

DN,m =



XT
1 V

−1
1 X1 0 . . . 0 XT

1 V
−1
1 Z1

0 XT
2 V

−1
2 X2 . . . 0 XT

2 V
−1
2 Z2

...
...

. . .
...

...
0 0 . . . XT

NV
−1
N XN XT

NV
−1
N ZN

ZT1 V
−1
1 X1 ZT2 V

−1
2 X2 . . . ZTNV

−1
N XN

∑N
i=1Z

T
i V

−1
i Zi

 ,

Similarly we have

HN,m =



XT
1 V −1

1 Σ1V
−1
1 X1 0 . . . 0 XT

1 V −1
1 Σ1V

−1
1 Z1

0 XT
2 V −1

2 Σ2V
−1
2 X2 . . . 0 XT

2 V −1
2 Σ2V

−1
2 Z2

...
...

. . .
...

...
0 0 . . . XT

NV −1
N ΣNV −1

N XN XT
NV −1

N ΣNV −1
N ZN

ZT
1 V −1

1 Σ1V
−1
1 X1 ZT

2 V −1
2 Σ2V

−1
2 X2 . . . ZT

NV −1
N ΣNV −1

N XN
∑N

i=1 Z
T
i V −1

i ΣiV
−1
i Zi


,

Since HN,m ≤ ηmDN,m, we have aT (DN,m(HN,m)−1DN,m)−1 ≤ ηma
T (DN,m)−1a. Note that DN,m can

be decomposed as

DN,m =

(
INp 0

Dzx(Dxx)−1 Iq

)(
Dxx 0

0 Dzz −Dzx(Dxx)−1Dxz

)(
INp (Dxx)−1Dxz

0 Iq

)
,

and hence

(DN,m)−1 =

(
INp 0

−Dzx(Dxx)−1 Iq

)(
(Dxx)−1 0

0 (Dzz −Dzx(Dxx)−1Dxz)−1

)(
INp −(Dxx)−1Dxz

0 Iq

)
.

Therefore, for any coordinate indicator a of βi, aT (DN,m)−1a = 1Tp (XT
i V

−1
i Xi)

−11p ≤ pλmin(XT
i V

−1
i Xi)

−1.
The result for the population-shared parameter α̂ could be obtained following the same argument. �

A.7.3 Uniform Consistency with Divergent N

Next, based on the result in Lemma A.1 and Corollary A.2, under condition (Ia) or (Ib), we provide a stronger uniform
consistency regarding the divergent-dimensional parameters when both N →∞ and m→∞.

Lemma A.2. Under regularity conditions (A1)-(A6), given τm = λmin(DN,mH
−1
N,mDN,m), if either condition (Ia)

holds with N = O(τm) or condition (Ib) holds with log(N) = O(τm), for any δ > 0, as τm →∞, we have

P
(
‖θ̂u(N) − θ

0
(N)‖∞ > δ

)
→ 0.

Lemma A.2 indicates that if N diverges at a limited rate compared to m, we are able to achieve a stronger uniform
consistency in terms of the L∞ norm. The allowed divergence rate of N depends on the tail property of the random
error’s distribution. Note that the τm in conditions (Ia) and (Ib) could also be replaced with η−1m λmin(DN,m) analo-
gous to the above discussion, which leads to a sufficient condition.

Proof: We denote

X̃ = (X,Z) =


X1 . . . 0 Z1

...
. . .

...
...

0 . . . XN ZN

 ,

7



and Ṽ = diag(V1, . . . ,VN ), Σ̃ = diag(Σ1, . . . ,ΣN ), ε̃ = (ε̃′1, . . . , ε̃
′
N )′.

Denote θ̂u(N) =

(
(β̂u(N))

′, (α̂u)′
)′

, we have the least squares estimator

(θ̂u(N) − θ
0
(N)) =

(
X̃T Ṽ −1X̃

)−1
X̃T Ṽ −1ε̃

=

(
X̃T Ṽ −1X̃

)−1
X̃T Ṽ −1Σ̃1/2Σ̃−1/2ε̃

=

(
X̃T Ṽ −1X̃

)−1
X̃T Ṽ −1Σ̃1/2ε̃∗.

Under condition (Ia) that N = o(τm), by Chebyshev’s inequality,

P(‖θ̂u(N) − θ
0
(N)‖∞ > δ) = P(‖(X̃T Ṽ −1X̃)−1X̃T Ṽ −1ε̃‖∞ > δ)

≤ δ−2tr
(

(X̃T Ṽ −1X̃)−1X̃T Ṽ −1Σ̃Ṽ −1X̃(X̃T Ṽ −1X̃)−1
)

= δ−2tr

(
(DN,m)−1HN,m(DN,m)−1

)
≤ δ−2(Np+ q)λmax

(
(DN,m)−1HN,m(DN,m)−1

)
≤ δ−2(Np+ q)(τm)−1 → 0

as τm →∞.

Moreover, let at = ((X̃T Ṽ −1X̃)−1X̃T Ṽ −1Σ̃1/2)t· denote the tth row of (X̃T Ṽ −1X̃)−1X̃T Ṽ −1Σ̃1/2, t =

1, . . . , (Np+ q). By condition (i) in (Ib), we have

P(|aTt ε∗i | > δ) < 2exp(− δ2

c2σ‖at‖22
).

Hence

P(‖θ̂u(N) − θ
0
(N)‖∞ > δ) = P(‖(X̃T Ṽ −1X̃)−1X̃T Ṽ −1Σ̃1/2ε̃∗‖∞ > δ)

≤
Np+q∑
t=1

P(|aTt ε∗| > δ)

≤
Np+q∑
t=1

2exp(− δ2

c2σ‖at‖22
)

≤ (Np+ q) max
1≤t≤Np+q

(2exp(− δ2

c2σ‖at‖22
))

= 2(Np+ q)exp(− δ2

c2σ max1≤t≤Np+q(‖at‖22)
).

Note that

max
1≤t≤Np+q

(‖at‖22) ≤ λmax
(

(X̃T Ṽ −1X̃)−1X̃T Ṽ −1Σ̃Ṽ −1X̃(X̃T Ṽ −1X̃)−1
)

= λmax

(
(DN,m)−1HN,m(DN,m)−1

)
= (τm)−1.
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By condition (ii) in (Ib) that log(N) = o(τm),

P(‖θ̂u(N) − θ
0
(N)‖∞ > δ) ≤ 2(Np+ q)exp(−δ

2τm
c2σ

)→ 0

as τm →∞. �

A.8 Proofs of Theorem 3, Corollaries 1-3

We first establish the following result.

Lemma A.3. Suppose there is a sequence of numbers {ai}i=1,...,N associated with a partition of index sets Gl (l =

1, . . . , L), such that |ai − bl| ≤ ε for any i ∈ Gl, where ε is a small positive value. Then there is a local minimizer b̂ of
following objective function

S(b|a) =

N∑
i=1

(
∧

1≤l≤L
|ai − bl|

)
,

such that ‖b̂− b‖∞ ≤ 2ε, where ∧
1≤l≤L

|ai − bl| = min
1≤l≤L

(|ai − bl|).

Proof: Without loss of generality, assume b1 = 0, we have |ai| ≤ ε for any i ∈ G1 and hence
∑
i∈G1 |ai| ≤ |G1|ε.

Moreover, note that
∑
i∈G1 |ai−2ε| =

∑
i∈G1(2ε−ai) ≥

∑
i∈G1 ε = |G1|ε and

∑
i∈G1 |ai+2ε| =

∑
i∈G1(2ε−ai) ≥∑

i∈G1 ε = |G1|ε. Therefore there is a minimizer |b̂1| ≤ 2ε and the proof of Lemma A.3 is completed.

Next we establish another lemma regarding subgrouping on heterogeneous parameters. Denote Bβ0
i
(r) as a ball

in Rp centered at β0
i with a radius r > 0.

Lemma A.4. Suppose either condition (Ia) holds with N = O(τm) or condition (Ib) holds with log(N) = O(τm),
for any constant r > 0, as τm →∞, there exists a local minimizer (α̂T , β̂T , γ̂T )T of QN,m in (3) such that

P
( ⋂

1≤i≤N

{β̂i ∈ Bβ0
i
(r)}

⋂
{α̂ ∈ Bα0(r)}

⋂
{γ̂ ∈ Bγ0(r)}

)
→ 1.

Proof: The proposed objective function is

QN,m(β(N),α,γ) =
1

2

N∑
i=1

‖ yi −Xiβi −Ziα ‖22 +λN,m

N∑
i=1

p∑
k=1

s(βik, γk)

= LN,m(θ(N)) + SλN,m
(β(N),γ).

Let θ∗(N) = θ0(N) + (τm)−1/2u, γ∗ ∈ Rp, where ‖ u ‖2= d. Note that SλN,m
(β0

(N),γ
0) = 0, by Taylor’s

expansion, we have

DN,m(u) = QN,m(θ∗(N),γ
∗)−QN,m(θ0(N),γ

0)

= LN,m(θ∗(N))− LN,m(θ0(N)) + SλN,m
(β∗(N),γ

∗)

= (τm)−1/2L̇TN,m(θ0(N))u+
1

2
(τm)−1uT L̈N,m(θ0(N))u+ SλN,m

(β∗(N),γ
∗),

= (τm)−1/2(GN,m)Tu+
1

2
(τm)−1uTDN,mu+ SλN,m

(β∗(N),γ
∗),
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where L̇N,m is the gradient vector of LN,m(θ) and L̈N,m is the Jacobian matrix. Note that

P (uT (HN,m)−1/2GN,m| > δ) ≤ δ−2uTE((HN,m)−1/2GN,m(GN,m)T (HN,m)−1/2)u

≤ δ−2d2,

implying that uT (HN,m)−1/2GN,m = Op(d). Moreover, we have

(HN,m)1/2 = (DN,m)1/2(DN,m)−1/2(HN,m)1/2(DN,m)−1/2(DN,m)1/2

≤ (DN,m)1/2λmax

(
(DN,m)−1/2(HN,m)1/2(DN,m)−1/2

)
(DN,m)1/2

= λmin

(
(DN,m)1/2(HN,m)−1/2(DN,m)1/2

)−1
DN,m

= (τm)−1/2DN,m,

and thus (τm)−1/2(HN,m)1/2 ≤ (τm)−1DN,m. Consequently, if d is sufficiently large, then the second term in
DN,m(u) dominates the first term, which implies that, with probability tending to 1, DN,m(u) > 0 at ‖ u ‖2= d.
Hence we have

P

{
inf
‖u‖2=d

DN,m(u) > 0

}
→ 1.

This implies that, with probability tending to 1, there exists a local minimizer θ̂(N) in the ballB(θ0(N), (τm)−1/2d).

In particular, this indicates that the convergence rate for estimator of any individualized parameter β̂i is (τm)1/2. Fol-
lowing the proof of Lemma A.2, under condition Ia or Ib, we have P (‖β̂(N)−β0

(N)‖∞ > p−1r)→ 0 for any positive

constant r. By Lemma A.3, given ‖β̂(N) − β0
(N)‖∞ ≤ p

−1r, there exists a minimizer γ̂ of SλN,m
(γ|β̂(N)), such that

γ̂ ∈ B(γ0, r). The proof of Lemma A.4 is completed.

Next we show that the objective function QN,m(θ∗(N),γ
∗) is convex at {θ∗(N) ∈ B(θ0(N), (τm)−1/2d)} ∩ {γ∗ ∈

B(γ0, (τm)−1/2d)} when m is sufficiently large. Note that, if β0
ik = γ0k , we have

sup
β∗
ik∈B(β0

ik),γ
∗
k∈B(γ0

k)

|β∗ik − γ∗k | ≤ sup
β∗
ik∈B(β0

ik)

|β∗ik − β0
ik|+ sup

γ∗
k∈B(γ0

k)

|γ∗k − γ0k|+ |β0
ik − γ0k|

≤ 2(τm)−1/2d+ |β0
ik − γ0k| → 0,

and inf
β∗
ik∈B(β0

ik)
|β∗ik|≥(|γ0k| − (τm)−1/2d)+ → |γ0k|. It follows

P

(
sup

β∗
ik∈B(β0

ik),γ
∗
k∈B(γ0

k)

|β∗ik − γ∗k | ≤ inf
β∗
ik∈B(β0

ik)
|β∗ik|

)
→ 1.

Define

S̃λN,m
(β∗(N),γ

∗) = λN,m

p∑
k=1

{∑
i∈Gc

k

|β∗ik|+
∑
i∈Gk

|β∗ik − γ∗k |
}
,

and Q̃N,m = LN,m+S̃λN,m
. We haveQN,m(θ∗(N),γ

∗) = Q̃N,m(θ∗(N),γ
∗) at {θ∗(N) ∈ B(θ0(N), (τm)−1/2d)}∩{γ∗ ∈

B(γ0, (τm)−1/2d)} when τm is sufficiently large, and thus argminQN,m = argmin Q̃N,m.
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Let θ∗∗(N) = θ0(N) + λ−1N,mu and γ∗∗ = γ0 + λ−1N,mv, similarly it follows that

DN,m(u,v) = Q̃N,m(θ∗∗(N),γ
∗∗)− Q̃N,m(θ0(N),γ

0) = LN,m(θ∗∗(N))− LN,m(θ0(N)) + S̃λN,m
(β∗∗(N),γ

∗∗)

=
(τm)1/2

λN,m
(τm)−1/2L̇TN,m(θ0(N))u+

τm
λ2N,m

1

2
(τm)−1uT L̈N,m(θ0(N))u

+ λN,m

p∑
k=1

{∑
i∈Gc

k

λ−1N,m|uik|+
∑
i∈Gk

λ−1N,m|uik − vk|
}
.

Since λN,m

(τm)1/2
→∞, hence DN,m(u,v)→p D(u,v), where

D(u,v) =

p∑
k=1

{∑
i∈Gc

k

|uik|+
∑
i∈Gk

|uik − vk|
}
,

which is minimized at {uik = 0|i ∈ Gck; uik = vk|i ∈ Gk}. BecauseDN,m(u,v) is a convex function, it follows [3]
that argminDN,m → argminD, and thus argminQN,m → argminD. This implies that P (β̂ik = 0|i ∈ Gck) → 1

and P (β̂ik = γ̂k|i ∈ Gk) → 1. The proof of Theorem 3 is completed and the proof of Corollaries 1, 2 and 3 follow
immediately. �

A.9 Proof of Theorem 4

First, we prove the estimation consistency as λm∗ = o(m∗). Recall that θ∗i = vec(β∗i ,α
∗) and X̃i

∗
= (X∗i ,Z

∗
i ).

Given γ̂, let

Qi,m∗(θ∗i |γ̂) =‖ y∗i − X̃∗i θ
∗
i ‖22 +(λm∗)

p∑
k=1

s(β∗ik, γ̂k)

= Li,m∗(θ∗i ) + Sλm∗ (β∗i |γ̂),

which is minimized at θ̂∗i , where Li,m∗(·) is the squared loss function and Sλm∗ (·) is the MDSP function.

Suppose 1
m∗ X̃∗i

T
X̃∗i → Ci where Ci is a positive definite matrix. Following [6], we define another function not

related to m∗

Qi(θ
∗
i |γ0) = (θ∗i − θ0

i )TCi(θ
∗
i − θ0

i ) + λ0

p∑
k=1

s(β∗ik, γ
0
k),

and λm∗/m∗ → λ0. Since Ci is not singular, if λ0 = 0, then Qi has a unique minimizer θ0
i . Following [6], we need

to show

sup
θ∗
i ∈Θ

∣∣∣∣ 1

m∗
Qi,m∗(θ∗i |γ̂)−Qi(θ∗i |γ0)− σ2

∣∣∣∣→p 0, (A.3)

for any compact set Θ and also that
θ̂∗i = Op(1). (A.4)

The result in (A.3) follows

1

m∗
‖ y∗

i − X̃∗i θ
∗
i ‖22−→p (θ∗i − θ0

i )TCi(θ
∗
i − θ0

i ) + σ2

11



according to standard results [10] and also

sup
θ∗
i ∈Θ

∣∣∣∣ 1

m
Sλm∗ (β∗

i |γ̂)− S0(β∗
i |γ0)

∣∣∣∣ ≤ sup
θ∗
i ∈Θ

1

m∗

∣∣∣∣Sλm∗ (β∗
i |γ̂)− Sλm∗ (β∗

i |γ0)

∣∣∣∣+ sup
θ∗
i ∈Θ

∣∣∣∣ 1

m∗
Sλm∗ (β∗

i |γ0)− S0(β∗
i |γ0)

∣∣∣∣
≤ λm∗p

m∗
‖ γ̂ − γ0 ‖2 +c|λm

∗

m∗
− λ0| → 0,

where c > 0 is a constant. AlthoughQi,m∗ is not convex, we note that argmin(Li,m∗) = Op(1) and argmin(Sλm∗ ) =

Op(1). It follows that θ̂∗i = argmin(Qi,m∗) = Op(1). Under (A.3) and (A.4), we have

argmin(Qi,m∗)→p argmin(Qi).

Next, we prove the selection consistency as λm∗/
√
m∗ →∞. Let β∗

i = β0
i + u

λm∗ and α∗ = α0 + v
λm∗ , where

u = Op(1) and v = Op(1). Let

Di,m∗(u,v) = Qi,m∗(β∗
i ,α

∗|γ̂)−Qi,m∗(β0
i ,α

0|γ̂)

= Li,m∗(β∗
i ,α

∗)− Li,m∗(β0
i ,α

0) + Sλm∗ (β∗
i |γ̂)− Sλm∗ (β0

i |γ̂)

= ‖εi −X∗i
u

λm∗
−Z∗i

v

λm∗
‖22 − ‖εi‖22 + λm∗

p∑
k=1

[s(β0
ik +

uk
λm∗

, γ̂k)− s(β0
ik, γ̂k)]

=

√
m∗

λm∗

1√
m∗
εTi (X∗i u+Z∗i v) +

m∗

λ2m∗
(uT ,vT )

(
1

m∗
(X∗i ,Z

∗
i )T (X∗i ,Z

∗
i )

)
(uT ,vT )T

+ λm∗

p∑
k=1

[s(β0
ik +

uk
λm∗

, γ̂k)− s(β0
ik, γ̂k)].

The first two terms vanish as λm∗/
√
m∗ →∞. Let γ̂ → γ(0), it follows that

Di,m∗(u,v)→
∑
k∈Ac

i

|uk|+
∑
k∈Ai

uk sign(γ
(0)
k − γ

0
k).

Since
√
m∗(γ̂ − γ0) ≤ Op(1), that is, γ(0) = γ0, then the second term above also vanishes, therefore Di,m∗(u,v) is

minimized at uk = 0, k ∈ Aci . Note that u = λm∗(β∗
i − β0

i ) and thus argmin(Qi,m∗) = argmin(Di,m∗), the proof
is hence completed.

In general, the regularity condition (A6) only guarantees that 1
m∗ (X∗i )TX∗i is positive definite, but not for

1
m∗ X̃∗i

T
X̃∗i since there could be invariant population-shared covariatesZ∗i within the individual. However, the above

argument still holds by taking a transformation Z̄∗i = Z∗i Ti such that 1
m∗ (Z̄∗i )T Z̄∗i is positive definite. �
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B Additional Numerical Studies and Algorithm Implementation

B.1 Subgroup Number Selection

In this simulation study, we first investigate the performance of the data-driven method discussed in Section 4 to
select the number of shrinkage centers (subgroups). We compared the proposed method (MDSP) based on BIC-type
criterion with a two-stage approach (OLSK) which employs the gap statistic [11] to choose the number of subgroups
for the K-means algorithm based on the least squares estimators of individualized coefficients. The OLSK method is
implemented by R package cluster (version 2.0.5) [8]. The number of bootstrap samples in calculating the gap statistic
is set as 100.

We generate the data following (15) in Section 5.1 under various scenarios. Scenario 1 has only a noise individu-
alized variable (βi = 0, i = 1, . . . , N ), while Scenarios 2 and 3 have two (βi = 0, 1) or three subgroups (βi = 0, 2, 5)
for one individualized predictor, respectively, and Scenario 4 assumes a model of two individualized predictors with
two (βi1 = 0, 2) or three (βi2 = 0,−2, 1) subgroups, respectively. The subgroup size in each scenario is balanced.

Table 1 provides the mean estimated number of subgroups and proportion of selecting the correct number of sub-
groups based on 100 replications. Overall, the proposed method is able to select the correct number of subgroup
with more than 85% probability over all scenarios with different sample sizes (N = 60, 120) and individual mea-
surement sizes (m = 5, 10, 20). The chance of selecting the correct number of subgroups increases as the individual
measurement size increases. In addition, the proposed method consistently outperforms the two-stage OLSK method,
especially when the individual measurement size is small (m = 5).

Table 1: The mean of identified subgroup numbers of the proposed model compared with the two-stage OLSK method
based on 100 simulations, with sample size N = 60, 120, individual measurement size m = 5, 10, 20. The first three
scenarios contain one individualized predictor (p = 1) of one, two and three groups, respectively. The last scenario
contains two individualized predictors (p = 2), one with two groups and the other with three groups. The subgroup
sizes are equal in each scenario. The subgroup homogeneous effects are listed as possible values for βi in the table.

Number of individualized variables p = 1 p = 2

Sample Cluster βi = 0 βi = 0, 1 βi = 0, 2, 5 β1i = 0, 2 β2i = −2, 0, 1

Size (N) Size(m) MDSP OLSK MDSP OLSK MDSP OLSK MDSP OLSK MDSP OLSK

60
5 1.0(100) 1.0(100) 2.0(95) 1.0(2) 2.9(88) 2.5(68) 2.0(100) 1.5(52) 3.2(85) 1.2(0)
10 1.0(100) 1.0(100) 2.0(100) 1.3(26) 3.1(90) 2.7(74) 2.0(100) 2.0(100) 3.1(90) 2.4(44)
20 1.0(100) 1.0(100) 2.0(100) 2.0(100) 3.1(92) 2.8(78) 2.0(100) 2.0(100) 3.0(100) 2.8(80)

120
5 1.0(100) 1.0(100) 2.0(96) 1.0(2) 3.2(86) 2.8(82) 2.0(100) 1.7(72) 3.1(90) 1.4(0)
10 1.0(100) 1.0(100) 2.0(100) 1.2(24) 3.1(92) 2.9(86) 2.0(100) 2.0(100) 3.1(90) 2.6(64)
20 1.0(100) 1.0(100) 2.0(100) 2.0(100) 3.0(98) 2.9(96) 2.0(100) 2.0(100) 3.1(92) 2.78(78)
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B.2 ACTG Data Analysis

In this section, we illustrate the proposed individualized variable selection method using the Harvard longitudinal
AIDS clinical trial group (ACTG) data. One of the goals from this study is to test the treatment effect of Zidovudine
on CD4 cell counts, e.g., [2].

The 140 patients from this study are repeated measured over 14 time points with a missing rate of 8.5% and
maintain CD4 counts above 50 at the baseline measures. The demographic information includes age and gender for
each patient. We denote ZDV=1 if the patient receives the treatment and ZDV=0 if the patient is in the control group.
Let yit be the CD4 counts for the ith patient at time t. Each individuals’ CD4 measurements are standardized by
within-individual standard deviation to achieve a uniform scale. A marginal model to incorporate time, treatment,
interaction of time and treatment, age and gender is provided as follows:

yit = β0 + βt ∗ Time+ βz ∗ ZDV + βzt ∗ ZDV ∗ Time+ βa ∗Age+ βg ∗Gender + εit. (A.5)

We are particularly interested in the treatment effect of Zidovudine over time. The standard analysis concludes that
the marginal treatment effect over time β̂zt is not significant with p-value= 0.113.

However, if we examine the time trend of CD4 counts from individuals, there exist subgroups for the treatment
group. Given the treatment ZDV, some individuals’ CD4 counts are more stable over time while some patients’ CD4
counts decrease more rapidly than the average of the control group over time. This could be interpreted that some
patients respond more positively, while some respond more negatively, and the remaining patients have no effects
from receiving ZDV treatment compared to the average effect of the control group.

Clearly, the subgroup differences are washed out if we apply the above marginal model in (A.5). Therefore, we
employ an individualized regression model which accommodates the personalized treatment effects ZDV over time as
the following:

yit = β0 + βt ∗ Time+ βz ∗ ZDV + βizt ∗ ZDV ∗ Time+ βa ∗Age+ βg ∗Gender + εit.

We assume for the βizt coefficient, that it falls into three subgroups (βizt = γ+ > 0, βizt = γ− < 0 or βizt = 0).
Note that for patients in the control group, we set βizt = 0 since their personalized effects corresponding to the
treatment are unobserved. Since the treatment variable is constant over time, we compare our proposed method with
the individual-wise Lasso model, the standard population homogeneous model, the random-effects model assuming a
random slope of ZDV and time interaction and the fused Lasso model.

We choose observations at times t = 1, . . . , 12 as the training set and the remaining observations at t = 13, 14 as
the testing set. On the testing set, we calculate the root mean square prediction error for each individual at t = 13, 14,
where the median of the individuals’ prediction errors is reported. Table 2 shows that the proposed method has the
smallest median prediction error among all methods. For example, the proposed method has 16.0%, 13.9% and 18.1%

improvement in prediction accuracy compared to the marginal model, the random-effects model and the Lasso model,
respectively.

Furthermore, Figure 1 shows the individuals corresponding to no effect, positive effect and negative effect in the
treatment group identified by the Lasso method and the proposed method respectively. The proposed method is able
to detect more individuals with significant responses to the treatment than the Lasso method does, as the proposed
separation penalty enables us to shrink the estimated coefficients in multiple directions.

To examine whether subgrouping provides more informative treatment effect over time, we refit a marginal regres-
sion model in (A.5) for each subgroup, where each subgroup consists of the corresponding individuals identified in
the treatment group and all individuals in the control group. Table 3 illustrates that the treatment effect over time from
the positive-effect subgroup selected by the Lasso method is still not significant, while the negative-effect subgroup is
significant with p-value of 0.02. In contrast, the proposed method identifies both positive and negative subgroups with
significant p-values of 0.02 and 0.00 respectively.
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Figure 1: The different individuals corresponding to no effect, positive effect and negative effect in the treatment group
selected by the Lasso model and the proposed method.

15



Table 2: The estimated coefficients of the population model, the random-effects model, the L1-penalty model and the
proposed model with corresponding median prediction errors (MPE) for the ACTG data. The individualized coefficient
estimators β̂izt’s in the Lasso model, the fused Lasso (fusedL) model and the proposed (MDSP) model are not listed.

Model β̂0 β̂t β̂z β̂a β̂g β̂zt γ̂+ γ̂− MPE
Population 3.09 −0.68 −0.54 0.01 −0.01 −0.24 - - 1.67

Random-effects 2.56 −0.68 −0.57 0.02 −0.01 −0.29 - - 1.70

Lasso 3.09 −0.76 −0.54 0.01 −0.01 - - - 1.64

fusedL 3.05 −0.72 −0.52 0.01 −0.01 - - - 1.62

MDSP 3.10 −0.68 −0.56 0.01 −0.01 - 0.62 −0.60 1.44

Table 3: The treatment effect estimators within each subgroup model (zero-effect group: β0
zt, negative-effect group:

β−zt and positive-effect group β+
zt) as well as the standard errors (s.e.) and the p-values. Each subgroup consists of

the corresponding individuals in the treatment group identified by the Lasso model or the proposed model (MDSP) as
well as all the individuals in the control group. The proportion of individuals with the treatment classified into each
subgroup is provided.

Model Estimates s.e. p-value Proportion
β̂0
zt −0.24 0.17 0.14 0.75

Lasso β̂−zt −0.73 0.31 0.02 0.18

β̂+
zt 0.82 0.48 0.10 0.07

β̂0
zt −0.04 0.30 0.89 0.20

MDSP β̂−zt −0.68 0.08 0.00 0.64

β̂+
zt 0.72 0.33 0.02 0.16
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B.3 Supplementary Results to Simulation Study in Section 5.1

This section collects the supplementary numerical results to the simulation study in Section 5.1. Specifically, Table
4 summarizes the individualized variable selection results; Table 5 presents the estimated sub-homogeneous effects
from the MDSP model; Figures 2 and 3 provide the boxplots of the variable selection evaluations with a sample size
N = 40.

Table 4: The average correct variable selection rate (CVSR), sensitivity and specificity of the proposed MDSP model
compared with other approaches based on 100 simulations, with sample size N = 40, 100, individual measurement
size m = 10, 20, and subgroup homogeneous effect γ = 1, 2, where Sub, Homo, FusedL, Lasso, AdapL, SCAD
and MCP stand for individual-wise model, homogeneous model, the fused Lasso, the Lasso, the adaptive Lasso, the
SCAD and the MCP regularization models, respectively. The number of subgroups (two) is correctly specified in the
proposed model.

Variable Sample Cluster Methods
Selection Size (N) Size(m) MDSP FusedL Lasso AdapL SCAD MCP

γ = 1

CVSR
40

10 0.916 0.692 0.876 0.820 0.717 0.741
20 0.970 0.678 0.924 0.869 0.778 0.829

100
10 0.909 0.673 0.862 0.840 0.718 0.754
20 0.963 0.682 0.890 0.888 0.773 0.833

Sensitivity
40

10 0.942 0.978 0.898 0.943 0.975 0.966
20 0.985 1.000 0.990 0.997 0.999 0.999

100
10 0.946 0.986 0.917 0.941 0.974 0.967
20 0.990 0.999 0.993 0.994 0.999 0.997

Specificity
40

10 0.909 0.406 0.853 0.696 0.460 0.517
20 0.956 0.356 0.857 0.742 0.557 0.659

100
10 0.886 0.360 0.807 0.739 0.462 0.542
20 0.942 0.364 0.787 0.782 0.547 0.669

γ = 2

CVSR
40

10 0.959 0.639 0.886 0.884 0.800 0.852
20 0.972 0.670 0.928 0.940 0.908 0.953

100
10 0.940 0.648 0.868 0.898 0.809 0.871
20 0.965 0.682 0.890 0.888 0.773 0.832

Sensitivity
40

10 0.997 0.996 0.997 0.998 1.000 0.998
20 1.000 1.000 1.000 1.000 1.000 1.000

100
10 0.998 0.997 0.998 0.998 0.999 0.999
20 1.000 0.999 0.993 0.994 0.999 0.997

Specificity
40

10 0.922 0.282 0.774 0.771 0.602 0.705
20 0.945 0.340 0.856 0.880 0.816 0.906

100
10 0.882 0.299 0.738 0.797 0.620 0.744
20 0.930 0.365 0.787 0.782 0.546 0.668
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Figure 2: The boxplots of CVSR, sensitivity and specificity for all regularization approaches based on 100 simulations,
with individual measurement size m = 10, 20, where homogeneous effect γ = 1 and sample size N = 40.
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Figure 3: The boxplots of CVSR, sensitivity and specificity for all regularization approaches based on 100 simulations,
with individual measurement size m = 10, 20, where homogeneous effect γ = 2 and sample size N = 40.
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Table 5: The average RMSE of the estimated subgroup homogeneous effect γ̂ from the proposed model based on 100
simulations (empirical standard errors in parenthesis), with sample size N = 40, 100, individual measurement size
m = 10, 20.

Homogeneous N=40 N=100
Effect T = 10 T = 20 T = 10 T = 20

γ = 1 1.03(0.08) 1.00(0.05) 1.02(0.05) 1.00(0.03)
γ = 2 2.01(0.07) 2.00(0.05) 2.00(0.05) 2.00(0.03)

B.4 ADMM Algorithm Implementation

In this section, we provide some implementation details for the proposed ADMM algorithm in Section 4.1 with an
independent model. In the proposed algorithm, we update {α,β}, {ν,γ} and Λ alternately at the (l + 1)th iteration
as follows:

{α(l+1),β(l+1)} = argmin
α,β

LN,m(α,β) +
κ

2
‖β − ν(l) + κ−1Λ(l)‖22, (A.6)

{ν(l+1),γ(l+1)} = argmin
ν,γ

SλN,m
(ν,γ) +

κ

2
‖β(l+1) − ν + κ−1Λ(l)‖22, (A.7)

Λ(l+1) = Λ(l) + κ(β(l+1) − ν(l+1)).

The optimization in (A.6) has an explicit solution as

{α(l+1),β(l+1)} =

(
X̃T X̃ + bdiag{0q×q, κINp+q}

)−1(
X̃TY + vec{0q×1, κν(l) − λN,mΛ(l)}

)
.

The optimization in (A.7) is achieved by iteratively updating ν and γ in

argmin
ν·j

N∑
i=1

{
κ

2
(νij − β(l+1)

ij − κ−1Λ
(l)
ij )2 + λN,m min(|νij |, |νij − γj |)

}
. (A.8)

Given γ, let β̃(l+1)
ik = β

(l+1)
ik + κ−1Λ

(l)
ik , the updates of ν are obtained as

ν
(new)
ik =

{
sign(β̃

(l+1)
ik ) ·max(0, |β̃(l+1)

ik | − λN,m

κ ), if |β̃(l+1)
ik | ≤ |β̃(l+1)

ik − γ(old)k |
γ
(old)
k + sign(β̃

(l+1)
ik − γ(old)k ) ·max(0, |β̃(l+1)

ik − γ(old)k | − λN,m

κ ), if |β̃(l+1)
ik | > |β̃(l+1)

ik − γ(old)k |
,

for k = 1, . . . , p, i = 1, . . . , N . And given ν, the γ is estimated via a one-dimensional exhaustive search along each
covariate for k = 1, . . . , p.
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