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Supplemental material - Appendix A

This document describes the material flow model (MFM) in details. It presents mathematical basics
of the formalism and introduces its properties. A short implementation note is also given.

1. Material flow model (MFM)

The MFM is a combination of three types of concepts: domains, data structures and procedures.

Domains. Each scalar parameter belongs to one of the four domains: TD, FD, SD, DD, repre-
senting: time, material amount (flow), processing speed, and dimensionless (or percentage) values,
respectively. Values from the first three domains have implicitly assigned units which satisfy the
obvious relation

[FD] = [SD] · [TD].

In the MFM time and material flow are considered to be continuous and values from all the defined
domains belong to R+ ∪ {0}.

Data structures. Data structures are compound data objects based on scalars from the domains.
For each data structure two aspects are defined, namely representation which defines how to code
the data structure by combination of scalars, and interpretation which determines meaning of the
data structure in the MFM.

A data structure sp represents a speed pattern of production resource and SPS is the set of all
such data structures. Representation of sp is defined by (1) as the sequence of pairs from TD×SD.

sp =

(
(ti, si)

∣∣∣
i=1,2,...,n

)
, sp ∈ SPS , ti ∈ TD, si ∈ SD, ∀

i∈{1,2,...,n−1}
(ti < ti+1 ∧ si 6= si+1). (1)

The data structure sp is interpreted according to (2a,b) as a piecewise constant time-varying
function, obtained by zero order backward linear interpolation based on points defined by sp rep-
resentation.

sp (·) : TD −→ SD, (2a)

s = sp (t) =

(
(ti, si)

∣∣∣
i=1,2,...,n

)
(t) =


s1 if 0 ≤ t < t1

si+1 if ti ≤ t < ti+1

∣∣∣
i=1,2,...,n−1

0 if tn ≤ t
. (2b)

The speed pattern will also be alternatively represented by multiplication of a nominal speed
u ∈ SD and an efficiency pattern ep ∈ EPS , such that

sp =

(
(ti, si)

∣∣∣
i=1,2,...,n

)
=

(
(ti, u · ei)

∣∣∣
i=1,2,...,n

)
= u ·

(
(ti, ei)

∣∣∣
i=1,2,...,n

)
= u · ep,
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where the data structure ep ∈ EPS is defined in the same way as sp ∈ SPS , except that ei ∈ DD
whereas si ∈ SD.

A data structure mf represents material flow in a production system and MFS is the set of
all such data structures. Representation of mf is defined by (3a,b) as the sequence of pairs from
TD × FD.

mf =

(
(ti, fi)

∣∣∣
i=1,2,...,n

)
, mf ∈ MFS , ti ∈ TD, fi ∈ FD, (3a)

f1 = 0, ∀
i∈{1,2,...,n−1}

(ti < ti+1 ∧ fi ≤ fi+1), ¬ ∃
i∈{1,2,...,n−2}

fi+1 − fi
ti+1 − ti

=
fi+2 − fi+1

ti+2 − ti+1
. (3b)

The data structure mf is interpreted according to (4a,b) as a function obtained by the first order
linear interpolation based on points defined by mf representation

mf (·) : TD −→ FD, (4a)

f = mf (t) =

(
(ti, fi)

∣∣∣
i=1,2,...,n

)
(t) =


0 if 0 ≤ t < t1
fi+1−fi
ti+1−ti (t− ti) + fi if ti ≤ t < ti+1

∣∣∣
i=1,2,...,n−1

fn if tn ≤ t
. (4b)

Procedures. Procedures are formal representations of computational algorithms that return
some data related to the MFM.

The procedure OMFP (output material flow) computes output material flow mfout that is the
result of processing performed by a resource with a given speed pattern sp characterized by start
time ts and total amount of processed material fmax (5). One assumes that at any time sufficient
amount of material for processing inflows from a storehouse or a previous process.

OMFP : SPS × TD × FD −→ MFS , mfout = OMFP (sp, ts, fmax) . (5)

The output material flow mfout is defined by the function

mfout (t) =


0 if 0 ≤ t < ts
t∫
ts

sp (τ) dτ if ts ≤ t < tc

fmax if tc ≤ t

. (6)

The parameter tc in (6) is the upper limit of the integral (7)

tc∫
ts

sp (τ) dτ = fmax. (7)

The definitions (2a,b) and (4a,b) implicate that the indefinite integral of any function given by a
data structure from SPS is represented by a function given by a data structure included in MFS∫

sp (τ) dτ = mf I (t) , sp ∈ SPS , mf I ∈ MFS .
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To get the value of tc from the relation (7) the inverse function of the indefinite integral mf I (t) is
needed. However, the function mf I (t) is in general not injective and thus its inverse does not exist

in the strict sense. Therefore a special inverse function m̃f I (f) defined by (8a,b,c) is used. This
function assigns to each value of the material flow f ∈ [0, fmax] the minimum value of time t from
the function mf I (t). This is justified, because the material flow retaining some value in the time
range [t1, t2] reaches this flow at the moment t1.

∀
mf I∈MFS

∃
m̃f I

mf I =

(
(ti, fi)

∣∣∣
i=1,2,...,n

)
=⇒ m̃f I =

(
(fi, ti)

∣∣∣
i=1,2,...,n

)
, (8a)

m̃f I (·) : F
[0,fmax]
D −→ TD, (8b)

m̃f I (f) =

(
(fi, ti)

∣∣∣
i=1,2,...,n

)
(f) =

{
0 if f = 0
ti+1−ti
fi+1−fi (f − fi) + ti if fi < f ≤ fi+1

∣∣∣
i=1,2,...,n−1

. (8c)

Now, the value tc can be calculated as follows

tc∫
ts

sp (τ) dτ = fmax =⇒ mf I (τ)
∣∣∣tc
ts

= fmax =⇒ tc = m̃f I
(
mf I (ts) + fmax

)
. (9)

It is important to notice that the function tc (ts) characterized by (9) is non-decreasing, because

m̃f I (·) is strictly increasing and its argument mf I (ts) + fmax is non-decreasing. The parameters ts
and tc will be called start time and completion time of an operation represented by mf.

The procedure CMTP (completion time) returning the value of tc on the basis of the parameters
sp, ts and fmax, according to (9), is defined as

tc = CMTP (sp, ts, fmax) , CMTP : SPS × TD × FD −→ TD. (10)

The material flow returned by the procedure OMFP is reliable only if there is enough amount of
material inflowing to the input of the process. If this inflowing material is represented by the data
structure mfin ∈ MFS and the processing machine has the speed pattern spout ∈ SPS , the earliest
start time tes can be defined that ensures reliability of the procedure OMFP

tes = min

{
t ∈ [ts,in, tc,in]

∣∣∣ ∀
τ∈[t,tc,in]

mfin (τ) + mf I
out (t)−mf I

out (τ) ≥ bf · fmax

}
, (11)

where ts,in and tc,in are the start and completion times of mfin, fmax is the maximum flow of mfin and

mf I
out is the indefinite integral of spout. The parameter bf (buffer) forces some additional margin

between material flows mfin and mfout such that the relation is more general and more adequate
for industrial practice. This margin is expressed as a fraction of the maximum flow and thus it has
the values restricted to the range [0, 1]. It is assumed that the value of maximum flow (fmax) is the
same for both material flows being in the in-out relation.

In this work, the material flow used as mfin in calculations of tes will always be equal to the
output material flow of the preceding operation. Hence, mfin can be considered as the result from
some machine working with the speed pattern spin that has the indefinite integral mf I

in, and the
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Figure 1. Interpretation of the earliest start time (tes).

substitution is possible

mfin (τ) 7−→ mf I
in (τ)−mf I

in (ts,in) . (12)

After this substitution, the relation (11) takes the form

tes = min

{
t ∈ [ts,in, tc,in]

∣∣∣ ∀
τ∈[t,tc,in]

mf I
in (τ)−mf I

in (ts,in) + mf I
out (t)−mf I

out (τ) ≥ bf · fmax

}
, (13)

which is helpful in analysing the dependency between the start time ts,in of some operation and
earliest possible start time tes of a next operation in the processing sequence. An example is
presented on Figure 1 which additionally explains relation (13). This relation is the base of the
procedure ESTP (earliest start time) defined as

ESTP : TD × SPS × SPS ×D
[0,1]
D × FD −→ TD tes = ESTP (ts,in, spin, spout, bf, fmax) . (14)

Finally, the material flow model is the 10-tuple of the previously introduced concepts

MFM = (TD,FD, SD,DD,MFS ,SPS ,EPS ,OMFP ,CMTP ,ESTP) .
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2. MFM properties

The following two properties of the MFM have a significant impact on features of scheduling
problems defined on the basis of it.

MFM Property 1. The completion time of an operation is a non-decreasing function of its start
time, i.e.

∀
sp∈SPS

ts1 ,ts2∈TD
fmax∈FD∧fmax>0

ts2 > ts1 =⇒ CMTP (sp, ts2 , fmax) ≥ CMTP (sp, ts1 , fmax) .

MFM Property 2. The earliest start time of an operation is a non-decreasing function of the
start time of the previous one, i.e.

∀
spin,spout∈SPS

ts1 ,ts2∈TD, bf ∈D[0,1]
D

fmax∈FD∧fmax>0

ts2 > ts1 =⇒ ESTP (ts2 , spin, spout, bf, fmax) ≥ ESTP (ts1 , spin, spout, bf, fmax) .

Property 1 reflects the fact that the function (9) is non-decreasing, as it has been noticed earlier.
In classic scheduling problems processing times are usually constant, i.e. for any operation[

∀
ts,tc∈T

p = tc − ts = const

]
=⇒

[
∀

ts1 ,ts2 ,tc1 ,tc2∈T
ts2 > ts1 =⇒ tc2 > tc1

]
,

where p is processing time of the operation and T is the time domain of the relevant scheduling
problem. In the problems formulated using the MFM only the weaker relation, given by Property
1, takes place.

Property 2 can be proved as follows

Proof. (MFM Property 2)
Let us assume that material inflowing to some process B as a result of a preceding operation A
performed by a machine with speed pattern spin ∈ SPS , starts at the time ts1 ∈ TD and has the
maximum flow fmax ∈ FD. The process B is to be performed by a machine with speed pattern
spout ∈ SPS , and the minimum material buffer between the operations A and B is defined as

bf ∈ D
[0,1]
D . Under these conditions, the earliest start time for the operation B equals

tes1 = ESTP (ts1 , spin, spout, bf, fmax) .

Let us select an optional ts2 ∈ TD such that

ts2 > ts1 ∧ tes2 = ESTP (ts2 , spin, spout, bf, fmax) . (15)

From (13) we obtain

∀
τ∈[tes2 ,tc2 ]

mf I
in (τ)−mf I

in (ts2) + mf I
out (tes2)−mf I

out (τ) ≥ bf · fmax, (16)
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where tc2 = CMTP (spin, ts2 , fmax). On the basis of (16) the following also holds

∀
τ∈[tes2 ,tc1 ]

mf I
in (τ)−mf I

in (ts1) + mf I
out (tes2)−mf I

out (τ) ≥ bf · fmax, (17)

because tc2 ≥ tc1 that results from (15) and MFM Property 1, as well as mf I
in (ts2) ≥ mf I

in (ts1), since
mf I

in (·) is non-decreasing. From the initial assumption and sentences (17), (13) we can conclude

[tes2 , tc1 ] ⊆ [tes1 , tc1 ] =⇒ tes2 ≥ tes1 .

3. MFM implementation note

The algorithmic layer of the MFM is based on the procedures OMFP , CMTP and ESTP . The
procedures OMFP (output material flow) and CMTP (completion time) have identical list of argu-
ments (sp, ts, fmax). In fact, the two procedures perform equivalent computations with the difference
that OMFP returns a complete material flow function, whereas CMTP returns only a specially ex-
tracted parameter of this function. In both cases, simple computations are executed for integrating
a piecewise constant time-varying function and finding the argument for which the resulting func-
tion reaches the value fmax.

time0

time0

speed

flow

spout

fmax

tes

mfin

a f

b c=d
e

bf·fmax R

Section A Section B Section C

mf * in
Ok,i-1

tA tB

Figure 2. Graphical interpretation of the procedure ESTP implementation.

The algorithm related to the procedure ESTP is more complex. An example is presented on
Figure 2 which shows graphical interpretation of the procedure implementation. The input data
consists of the parameters: mfin, spout, bf, fmax. The input material flow mfin is given arbitrary for
simplicity, however, it can also be represented by input speed pattern spin and start time ts,in of
the operation Ok,i−1, as it is defined in (12) and (13). Hence, the input data is actually equal to
that defined for the procedure ESTP (14). The resulting value of the parameter tes is obtained by
means of the following operations
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• Shift mfin vertically down by the absolute value of minimal buffer, i.e. bf · fmax. Denote shifted
plot by mf ∗in.
• Select the two time values: tA, i.e. the maximum time for which mf ∗in has the value 0, and tB,

i.e the minimum time for which mfin has the value fmax.
• Split the interval [tA, tB] into sections where the value of spout remains constant (sections A,

B, C on Figure 2).
• For each section, from left to right, consecutively construct a line segment which has slope

defined by spout and is located as high as possible, but respecting the following constraints
◦ each point of the line segment has to be not higher than a point of mf ∗in for the same

time argument (the constraint active for the line segments a and c on Figure 2), and
also
◦ the location of a line segment that leads to connection with preceding one is the highest

possible for a line segment in each section, except for the first (the constraint active for
the line segment b on Figure 2).

• Denote the last point in the last section as R.
• Construct a polyline starting from the point R by adding in each section, from right to left,

a line segment with slope defined by spout (the line segments d, e and f on Figure 2). This
polyline crosses the time axis at tes.

The described algorithm can be easily implemented in a chosen programming language. In the
implementation the geometric operations have to be substituted by analytic geometry transforma-
tions.
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