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LA-ICPMS U–Pb geochronology methods for apatite and zircon 

Apatite and zircon were hand-picked from heavy fraction of crushed rocks and mounted in 1” rounds 

blocks using epoxy resin. The mounts were then polished using 1-micron diamond compound. After 

polishing the samples were cleaned in distil water in a sonic bath, rinsed several times and then being 

dried thoroughly. 

Both apatite and zircon U–Pb geochronology were conducted on an Agilent 7900 quadrupole ICPMS 

coupled to a Coherent COMPex Pro 110 utilising an ArF excimer laser, operating at the 193 nm 

wavelength and a pulse width of ~20 ns. A RESO-lution/Laurin Technic S155 constant geometry 

ablation cell was used. Ablation of the various minerals took place in a helium atmosphere (0.35 l/min) 

that was immediately mixed with argon (~1 L/min). The signal was homogenised in a signal smoothing 

device (the ‘squid’) and finally sent into the torch of the ICP-MS. Small amounts of nitrogen gas (~1.5 

ml/min) was added to the gas stream after the ablation cell to improve sensitivity. The ICP-MS is tuned 

daily for maximum sensitivity while keeping oxides below 0.2% (ThO/Th in a line on NIST612). Each 

analysis began with a 10–30 second analysis of the blank gas measurement followed by a further 20–

30 seconds of acquisition time when the laser was switched on. 

Apatite analyses with associated reference materials were ablated with a 29 m spot size at 5 Hz and 

~2 J/cm2 laser fluence. The OD306 apatite (Thompson et al., 2016) was used as a primary in-house 

geochronology reference material for calibration of Pb/U ratios and to correct for instrument drift 

(Huang et al., 2015). Calibration of the 207Pb/206Pb ratio was done using analyses of the NIST610 

reference glass analysed under the same conditions as the unknowns. The Durango (McDowell, 

McIntosh, & Farley, 2005), Kovdor (Amelin & Zaitsev, 2002), McClure Mountain (Schoene & Bowring, 

2006), Otter Lake (Barfod, Krogstad, Frei, & Albarède, 2005) and OD401 (Thompson et al., 2016) 

apatite were employed as secondary geochronology reference materials and were treated as 

unknowns. 

Zircons were sampled on 29–32 μm spots using the laser at 5 Hz and approximately 2 J/cm2 laser 

fluence. Detailed analytical method for U–Pb dating of zircon was outlined in Thompson, Meffre and 

Danyushevsky (2018). Zircon 91500 (207Pb/206Pb age = 1065.4 ± 0.3 Ma; Wiedenbeck et al., 1995) 

was used as a primary reference material for all analyses, which were further verified by secondary 

reference zircons Temora (206Pb/238U age = 416.75 ± 0.24 Ma; Black et al., 2003) and Plešovice 

(206Pb/238U date of 337.13 ± 0.37 Ma; Sláma et al., 2008). 

The data were reduced using an in-house excel-based spreadsheet, with error propagation following 

published recommendations (Horstwood et al., 2016); i.e. random uncertainties as well as total 

uncertainties including systematic uncertainties). The data reduction was based on the method 

outlined in Halpin et al. (2014) and is similar to that outlined in Black et al. (2004) and Paton et al. 

(2010). The program Isoplot 4.11 (Ludwig, 2008) was used for Tera-Wasserburg concordia plots and 

age calculations. 
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Description of geochronology samples 

Drill 
hole 

Depth 

(m) 

Field # Description 

ACD2 673.4 OD20 Feldspar-phyric rhyolite: Ti/Zr ~6–7. Purplish grey aphanitic 

groundmass; white prismatic feldspar phenocrysts (~10 modal%, 6–8 

mm). Moderately altered, abundant Fe oxide veins. 

ACD2 795.7 OD22 Fine breccia: Massive, poorly sorted breccia composed of angular pink 

clasts (2–4 cm) in fine grey sandstone matrix; bed <1 m thick between 

rhyolite units. 

ACD2 907.2 OD23 Feldspar-phyric rhyolite: Ti/Zr ~7–8. Massive, pink aphanitic 

groundmass; green prismatic feldspar phenocrysts (~7 modal%, 6–10 

mm). Moderately altered. 

ACD7 599 OD1199-

RX8078 

Granite: Mottled pink-green-grey equigranular, medium grained, 

massive granite composed of pink or green-grey feldspar and 

subordinate quartz. Moderately altered. 

ACD19 845 OD1178 Felsic dyke/sill: Ti/Zr ~5, rhyolite. Mottled pink-green aphanitic 

groundmass; cream-pale green, prismatic feldspar phenocrysts (~5 

modal%, 5–10 mm). Weakly altered. Sharp contacts at 841 and 850 m. 

ACD19 936.3 OD1182 Laminated clastic facies: Pink versus grey, planar laminae composed 

of mudstone and well sorted quartzo-feldspathic sandstone; strongly 

magnetic. Narrow (mm–cm) Fe oxide–sulfide veins. 

ACD20 816.4 OD419 Ignimbrite: Ti/Zr 7–10. Dark green-grey, wispy fiamme (1–6 cm long) 

and sparse lithic fragments (1–2 cm) in pink matrix; aphyric(?) or 

crystal-poor (<1 modal%, feldspar, <0.5 mm). Strongly altered. 

ACD20 827.5 OD420 Megacrystic granite: Pink feldspar crystals (1–5 cm) dispersed in grey, 

finer (1–4 mm), equigranular, quartz–feldspar–ferromagnesian 

assemblage. Ferromagnesian phase completely altered to green 

chlorite. Overall, weakly altered. 

ACD21 535 OD1196 Feldspar-phyric dacite: Ti/Zr ~20. Massive, pink-red-brown aphanitic 

groundmass; cream or dark green prismatic feldspar phenocrysts (~7 

modal%, 2–8 mm). Quartz-filled amygdales (2–5 mm); locally 

monomictic breccia. Weakly altered, narrow (mm) Fe oxide veins. 

ACD21 726.3 OD1197 Felsic dyke/sill: Ti/Zr 7–10, rhyolite. Red aphanitic ground mass; pink-

cream feldspar (1–8 mm) and quartz (1–6 mm) phenocrysts (10–15 

modal% total). Weakly altered. Sharp contacts at 724.6 m and 742 m. 
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Figures S1–S16. Stratigraphic and Ti/Zr logs for drill holes. 
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Figure S1a. Legend for lithologies shown on Acropolis drill hole logs.  
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Figure S1b. ACD1. The GRV (718-1097.6 m) section is ~380 m thick. The top part (~204 m) is very 

strongly altered and includes thick intervals of massive Fe oxide (drill hole was probably drilled along 

steeply dipping Fe oxide veins). Below ~922 m, the alteration intensity and Fe oxide abundance 

diminish, and it could be that a fault separates the upper strongly altered interval from the lower 

less altered interval. The less altered GRV comprises feldspar-phyric rhyolite(?) (922-1064 m) 

overlying fine dark-grey dacite(?)(1064 m to EOH). Bracket and “2” are Member 2 of the Pandurra 

Formation according to Cowley (1993). Inset gives the downhole Ti:Zr data from 1-m interval assays.  
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Figure S2. ACD2. The GRV (445-915 m) section is ~470 m thick. The top part (~228 m) is more 

strongly altered than the lower part and includes abundant Fe oxide veins. The Ti/Zr of the strongly 

altered interval shows the effects of alteration but appears to be higher (mostly >10) than the Ti/Zr 

of the lower part (<8). Breaks between successive feldspar-phyric rhyolite units occur at ~795 m and 

~812-845 m, the latter including distinctive spotty texture. Four ages have been determined - three 

using LA-ICPMS (two on zircon, one on apatite (Ap)) and one using CA-TIMS (red font) (Table 1). Inset 

gives the downhole Ti/Zr data from 1-m interval assays.                                                                    
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Figure S3. ACD3. This drill hole is east of an inferred fault that separates GRV to the west from pre-

GRV basement units to the east, so there is no GRV preserved. The main lithology is Donington Suite 

foliated megacrystic granite. The granite is intensely (above ~800 m) to moderately brecciated so the 

drill hole could have been drilled along or close to a fault. At least one mafic and three felsic dykes 

appear to cut the brecciated Donington Granite; the dykes could therefore post-date the 

brecciation/fault. The breccia below ~1197 m is finer. Bracket and “2” are Member 2 of the Pandurra 

Formation according to Cowley (1993). Inset gives the downhole Ti:Zr data from 1-m interval assays. 
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Figure S4. ACD4. The GRV section (574-848 m) is ~274 m thick and mostly comprises weakly altered 

dacitic units. The downhole Ti:Zr profile reflects the volcanic units very well. The narrow interval of 

feldspar-phyric rhyolite (750-755 m) is probably a dyke or sill. The drill hole intersected laminated 

clastic facies and a quartz-phyric(?) unit near the base and ended in andesite(?). This drill hole does 

not have the GRV ignimbrite found in ACD19 which is <2 km to the south-southeast, but the 

lowermost fine feldspar-phyric dacite (Ti/Zr ~22) could match the uppermost fine feldspar-phyric 

dacite in ACD19 (Ti:Zr 20-22). Bracket and “2” are Member 2 of the Pandurra Formation according to 

Cowley (1993). Inset gives the downhole Ti:Zr data from 1-m interval assays. 
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Figure S5. ACD5. The GRV section (426-687 m) is ~261 m thick and comprises weakly altered 

feldspar-phyric rhyolite. The drill core is noticeably broken and somewhat more altered above ~500 

m. Texturally similar feldspar-phyric rhyolite that occurs in holes in the southwestern part of the 

area (e.g. ACD1, ACD9, ACD10) is much more strongly altered and has a much higher abundance of 

Fe oxide veins. Notable in this hole is the absence of the Pandurra Formation, suggesting that this 

location was a GRV-age topographic high when the Pandurra Formation was being deposited. 

Alternatively,  this location was up-faulted to a topographically high position after deposition of the 

Pandurra Formation and the Pandurra Formation was then completely eroded. Inset gives the 

downhole Ti:Zr data from 1-m interval assays.                                                                  
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Figure S6. ACD6. This drill hole is east of an inferred fault that separates GRV to the west from pre-

GRV basement units to the east, so there is no GRV section preserved. The main lithology is 

equigranular diorite(?) for which Jagodzinski (2005) reported a SHRIMP U-Pb in zircon age of 1853.3 

± 3.7 Ma. The diorite(?) and another finer? green lithology are foliated above 672 m.  At least three 

mafic dykes appear to cut the diorite(?). Inset gives the downhole Ti:Zr data from 1-m interval 

assays. 
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Figure S7. ACD7. The pre-Pandurra Formation part of the section (465-978.8 m) is strongly altered. 

The top ~360 m consists of altered, equigranular, non-foliated granite that includes Fe oxide veins 

and thick intervals of massive Fe oxide (drill hole was probably drilled along steeply dipping Fe oxide 

veins). Three ages determined on this granite (two using LA-ICPMS, one on zircon, one on apatite 

(Ap) and one using CA-TIMS (red font)) indicate that it belongs to the Hiltaba Suite (Table 1). Below 

~823 m, the lithology could be more of the same altered granite or altered GRV (as logged by R 

Uphill). If the latter is correct, then the unit could be dacite or rhyolite (Ti:Zr has been strongly 

affected by the Fe oxide veins). The Pandurra Formation is very thin compared with drill holes 

nearby to the southwest (121 m and 233 m) and south (>510 m). Inset gives the downhole Ti:Zr data 

from 1-m interval assays.                                                                    
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Figure S8. ACD8. The main lithology below the Pandurra Formation is foliated megacrystic granite 

(795-910.2 m) assumed to be the Donington Suite. The granite is more strongly foliated and altered 

above ~849 m but the abundance of Fe oxide veins is low throughout. Bracket and “2” are Member 2 

of the Pandurra Formation according to Cowley (1993). 
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Figure S9. ACD9. The GRV (643-877 m) section is ~234 m thick and strongly altered, and includes 

thick intervals of massive Fe oxide (drill hole was probably partly drilled along steeply dipping Fe 

oxide veins). The altered feldspar-phyric rhyolite is similar to altered feldspar-phyric rhyolite in ACD1 

and ACD10, and at the base of ACD2. Bracket and “2” are Member 2 of the Pandurra Formation 

according to Cowley (1993). Inset gives the downhole Ti:Zr data from 1-m interval assays. 
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Figure S10. ACD10. The GRV (552-807.5 m) section is ~256 m thick and strongly altered; Fe oxide 

veins are abundant below ~754 m. The altered feldspar-phyric rhyolite is similar to altered feldspar-

phyric rhyolite in ACD1 (Fig. S1) and ACD9 (Fig. S9), and at the base of ACD2 (Fig. S2). Inset gives the 

downhole Ti:Zr data from 1-m interval assays. 
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Figure S11. ACD12. This drill hole is east of an inferred fault that separates GRV to the west from 

pre-GRV basement units to the east, so there is no GRV preserved. Equigranular diorite(?) assumed 

to belong to pre-GRV basement occurs above foliated megacrystic granite assumed to belong to the 

Donington Suite. The diorite(?) is similar to diorite(?) in ACD6 ~4.5 km to the north (Fig. S6). A red 

feldspar-quartz-phyric rhyolitic dyke/sill (undeformed, no Fe oxide veins, weakly altered) intrudes 

the megacrystic granite; this dyke/sill is similar to felsic dykes/sills that intrude the Donington Suite 

in ACD3 (Fig. S3) and intrude the GRV in ACD19 (Fig. S14) and ACD21 (Fig. S16). Bracket and “2” are 

Member 2 of the Pandurra Formation according to Cowley (1993). Inset gives the downhole Ti:Zr 

data from 1-m interval assays. 
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Figure S12. ACD15. No GRV was intersected in this hole. The beds of polymictic hematite-clast 

conglomerate that occur at the base of the hole are typical of facies found at the base of the 

Pandurra Formation where it overlies GRV or older basement lithologies in other drill holes, so the 

base of this drill hole is probably very close to the base of the Pandurra Formation. Volcanic clasts 

occur in the conglomerate so it is likely that the Pandurra Formation overlies GRV (rather than older 

basement). The Pandurra Formation is very thick (>510 m) – thicker than in any other Acropolis 

holes and much thicker than the nearby holes.  
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Figure S13. ACD18. The GRV (675-851 m) section is ~175 m thick, most of which appears to comprise 

moderately altered feldspar-phyric dacite that is cut by numerous thin Fe oxide veins. The lowest ~5 

m at the base of the drill hole could be a quartz-feldspar-phyric rhyolite dyke/sill, or else the top of 

another GRV unit; the top contact is sharp and marked by broken core (fault?). Inset gives the 

downhole Ti:Zr data from 1-m interval assays.                                                                
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Figure S14. ACD19. The GRV (513-939.7 m) section is ~427 m thick and comprises variably altered 

dacite units interbedded with strongly altered ignimbrite and aphyric andesite. The volcanic units 

correspond closely with the Ti:Zr profile; Fe oxide veins are minor and thin. The narrow interval of 

feldspar-phyric rhyolite (841-850 m) is probably a dyke or sill, consistent with its age (red font, CA-

TIMS, black font, LA-ICPMS) being slightly younger than that of the GRV. The drill hole ended in 

strongly magnetic, laminated clastic facies, the LA-ICPMS zircon age of which indicates a Donington 

Suite provenance. The uppermost fine feldspar-phyric dacite (Ti:Zr 20-22) could match the 

lowermost fine feldspar-phyric dacite (Ti:Zr ~22) in ACD4 (Fig. S4) which is <2 km to the north-

northwest. Inset gives the downhole Ti:Zr data from 1-m interval assays.                                                                  
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Figure S15. ACD20. The GRV (422-820 m) section is ~398 m thick and comprises weakly altered 

dacite units above strongly altered ignimbrite. The ignimbrite overlies altered megacrystic granite 

(Donington Suite) but the contact is complicated by a quartz-phyric rhyolite dyke/sill (~820-825 m). 

The fine feldspar-phyric dacite (Ti/Zr ~20) and altered ignimbrite in this drill hole can be correlated 

with similar units in ACD19 (Fig. S14) which occurs ~3 km to the north-northwest. However, none of 

the pre-Pandurra Formation section in this drill hole correlates with drill holes nearby to the west 

(ACD7, ~2 km west-northwest; Fig. S7) or to the east (ACD6, ~1.5 km east; Fig. S6). Although 

imprecise, the LA-ICPMS zircon ages confirm the affinity of the GRV units and the Donington Suite, 

and reveal the Donington Suite provenance of sandstone interbedded in the GRV. Inset gives the 

downhole Ti:Zr data from 1-m interval assays.  
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Figure S16. ACD21. The GRV (361-822.4 m) section is more than 461 m thick and comprises feldspar-

phyric dacite and rhyolite units. The intensity of alteration is higher above ~517 m and the 

abundance and size of Fe oxide veins is noticeably lower below ~620 m. The GRV section in this drill 

hole is broadly similar to the GRV in ACD2 ~1 km to the northwest (Fig. S2) but cannot be matched 

with the single GRV unit in ACD18 ~1 km to the east (Fig. S13). A red quartz-feldspar-phyric rhyolitic 

dyke/sill (724.6-742 m; undeformed, no Fe oxide veins, weakly altered) intrudes the lower feldspar-

phyric rhyolite. Similar felsic dykes/sills intrude the Donington Suite in ACD3 (Fig. S3) and ACD12 (Fig. 

S11) about 2 km to the east. Two imprecise LA-ICPMS ages were obtained for the GRV section (one 

on zircon, one on apatite). The Pandurra Formation is missing. Inset gives the downhole Ti:Zr data 

from 1-m interval assays.  
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Figures S17 and S18. LA-ICPMS isochrons for Acropolis samples. 

 

Figure S17. Zircon LA-ICPMS isochrons for Acropolis samples. 
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Figure S18. Apatite LA-ICPMS isochrons for Acropolis samples. 
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Figure S19. OD20 (ACD2, 673.3 m) Cathodoluminescence 
images with CA-TIMS labels next to analysed zircons.

Figures S19–S23. Cathodoluminescence images of zircons. 
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labels next to analysed zircons.
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Figure S23. OD1182 (ACD19, 936.3 m) Cathodoluminescence images with CA-TIMS labels next to analysed zircons.
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Figures S24–S26. Images of core samples

 

Figure S24. Pandurra Formation in ACD15, ~689 to 694 m. Interbedded fine to coarse quartz 

sandstone and red mudstone.  

 

 

Figure S26. Donington Suite megacrystic granite in ACD3, 1011 to 1014 m. 

 

Figure S24. Pandurra Formation in ACD15, ~689 m to 694 m. Interbedded fine 

to coarse quartz sandstone and red mudstone. 

Figure S26. Donington Suite megacrystic granite in ACD3, 1011 m to 1014 m. 
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Figure S25. Groundmass textures in GRV felsic lavas. Top, altered amygdaloidal dacite, ACD20, 649 

m; amygdales are elongate and aligned. Middle, flow-banded fine dacite, ACD20, 633 m. 

Lower, relic perlite (abundant round features are perlite cores) in altered fine dacite, ACD20, 

529 m. 

Figure S25. Groundmass textures in GRV felsic lavas. Top, altered amygdaloidal dacite, ACD20, 649 

m; amygdales are elongate and aligned. Middle, flow-banded fine dacite, ACD20, 633 m. Lower, relic 

perlite (abundant round features are perlite cores) in altered fine dacite, ACD20, 529 m. 
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