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SM.A: Results for Reflection Size-and-Shape

Throughout the main part of the paper we have required that R is a proper rotation,

i.e. R 2 SO(m). Here we consider the situation where shape is viewed as invariant under

reflection, i.e. the reflected version of an object is considered to have the same shape as the

original object. Specifically, we consider R 2 O(m). Since O(m) = SO(m)[O�(m), where

O�(m) = {R 2 O(m) : |R| = �1} and SO(m) are isometric, it turns out that Lemma 1

holds as stated, but with R 2 O(m), and with D(�) in (13) and (14) replaced by

D+(�) = 2�m|�|k�m

mY

i<j

(�2
i
� �2

j
), (SM1)

i.e. the only di↵erence is the factor 2�m+1 in (14), which changes to 2�m in (SM1).

The version of Theorem 1 when R 2 O(m) is now stated.

Theorem SM1. Suppose that X ⇠ Nk⇥m(µ, Im⌦⌃), where k � m and ⌃ has full rank

k. Consider the singular value decomposition X = U�R> given by (2). Then the density

f1+(U,�) with respect to the measure (d�)(dU), defined via Lemma 1 and equation (SM1),

is given by

f1+(U,�;µ,⌃) =
D+(�)C+(A)
(2⇡)km/2|⌃|n/2 exp

⇢
�1

2
tr
�
�U>⌃�1U�+ µ>⌃�1µ

��
, (SM2)
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where D+(�) is defined in (SM1), A = µ>⌃�1U� is an m ⇥m matrix and, for given A,

C+(A) is defined by

C+(A) =
Z

R2O(m)

exp
�
tr
�
RA>

� 
(dR). (SM3)

Moreover, the conditional distribution of R given U and � has density with respect to the

unnormalized geometric, or Haar, measure (dR) on O(m) given by

f2+(R|U,�;µ,⌃) =
1

C+(A)
exp

�
tr
�
RA>

� 
. (SM4)

The statement of Theorem 2 is unchanged in the reflection size-and-shape case except

that the expectation of Ri, conditional on Ui and �i, is calculated using (SM4), the condi-

tional density of Ri over O(m), rather than (17), the conditional density of Ri over SO(m).

The relevant formulae for the conditional expectation of the Ri are given in (SM6) and

(SM7) below.

The reflection size-and-shape analogue of Lemma A.1 in Appendix A is now stated.

Lemma SM1. Suppose m = 2 and define the 2 ⇥ 2 matrix M = (mij)2i,j=1 as in (A2).

Then

R̄ = Eµ,⌃[R|U,�] =

Z

R2O(2)

Rf2+(R|U,�;µ,⌃)(dR)

= !1A(⇢1)

0

@ cos↵1 � sin↵1

sin↵1 cos↵1

1

A + !2A(⇢2)

0

@ � cos↵2 sin↵2

sin↵2 cos↵2

1

A ,

where f2+ is defined in (SM4),

cos↵1 = (m11 +m22)/⇢1, sin↵1 = (m12 �m21)/⇢1

⇢1 =
p
(m11 +m22)2 + (m12 �m21)2, ⇢2 =

p
(m22 �m11)2 + (m12 +m21)2,

cos↵2 = (m22 �m11)/⇢2, sin↵2 = (m12 +m21)/⇢2,

!j = I0(⇢j)/{I0(⇢1) + I0(⇢2)}, j = 1, 2,
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and A(⇢) = I1(⇢)/I0(⇢), as previously.

The analogue of of Proposition A.1 in Appendix A is as follows.

Proposition SM1. Suppose that the 3⇥ 3 matrix µ>⌃�1U>� in (17) has singular value

decomposition

µ>⌃�1U>� = T1�T
>

2 , (SM5)

where � = diag{�1,�2,�3}. Define ⌅ = diag{⇠1, ⇠2, ⇠3, ⇠4}. Then

R̄ = Eµ,⌃[R|U,�] =

Z

R2O(3)

Rf2(R|U,�;⌃, µ)(dR) = T1⌦+T
>

2 , (SM6)

where f2+ is defined in (A4), ⌦+ = diag{!1,!2,!3} and, using the notation explained in

Proposition A.1

!j+ = 1� C6+(⌅k) + C6+(⌅`)

⇡C4+(⌅)
, j, k, ` 2 {1, 2, 3}, j 6= k 6= ` 6= j,

and

Cq+(⇤) = Cq(⇤) + Cq(�⇤), (SM7)

with Cq(⇤) defined in (A4).

For the calculation of the Bingham normalizing constants appearing in Proposition

SM1, see the comments following Proposition A.1.

SM.B: Proofs

Proof of Lemma 1 and formula (SM1). The version of Lemma 1 with R 2 O(m) is given

in Theorem 3.1 of Diaz-Garcia et al. (1997). The reason why the factor 2�m+1 is present

in (14) and the factor 2�m is present in (SM1) is now explained. Using (2), and assuming

that the diagonal elements of

� = diag{�1, . . . , �m}
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are distinct and positive, we may write

X =
mX

j=1

�jujr
>

j
=

mX

j=1

�j(✏juj)(✏jr
>

j
),

where uj and rj are, respectively, column j of U and R, and ✏j = ±1, j = 1, . . . ,m. If we

only require R 2 O(m) as opposed to R 2 SO(m) then, almost everywhere with respect to

Lebesgue measure on Rk⇥m,

(U,�, R) 7! X (SM1)

is a 2m : 1 map, hence the factor 2�m in (SM1). On the other hand, if we require that

R 2 SO(m), then only those sign changes with an even number of the ✏j negative will leave

the sign-transformed R in SO(m), in which case the map (SM8) is 2m�1 : 1. This is why

the factor 2�m+1 is present in (14). ⇤

Proof of Theorem 1 and Theorem SM1. SubstitutingX = U�R> from (2) into the exponent

of (12) and rearranging,

�1

2
tr
�
(X � µ)>⌃�1(X � µ)

 
= tr

�
RA>

�
� 1

2
tr
�
�U>⌃�1U�+ µ>⌃�1µ

 
, (SM9)

where A = µ>⌃�1U� as before. Using Lemma 1 and (SM9), (15) follows after integrating

over R 2 SO(m) and using (16). Also, (17) follows because, from (SM9), it is seen that the

conditional density with respect to (dR) is proportional to exp{tr(RA>)}, with normalizing

constant given by (16). The details of the proof of Theorem SM1 are similar, the only

di↵erences being that the relevant integral is over R 2 O(m), D(�) in (14) is replaced by

D+(�) in (SM1), and C(.) in (15), (16) and (17) is replaced in (SM2) and (SM4) by C+(.)

defined in (SM3). ⇤

Proof of Theorem 2. Let Q(r)(B,⌃) denote the expectation of the full log-likelihood

(19) over the missing data R1, . . . , Rn conditional on the observed data �1, . . . ,�n and

U1, . . . , Un, obtained using (3), and with B = B(r) and ⌃ = ⌃(r). For a given r, we choose
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B = B(r+1) and ⌃ = ⌃(r+1) to maximize Q(r)(B,⌃). Recall that B = [B1, . . . , Bp] where

each Bj is a k ⇥m parameter matrix. It follows from Theorem 1 and the form of the full

log-likelihood (19) that B(r+1) will satisfy

@Q(r)

@Bj

(B,⌃) ⌘ ⌃�1

 
nX

i=1

zijX̄
(r)
i

�
nX

i=1

pX

k=1

zijzikBk

!
= 0k,m, j = 1, . . . , p, (SM10)

where X̄(r)
1 , . . . , X̄(r)

n are defined in (22). Under the assumptions of the theorem, and

assuming that ⌃ has full rank, (SM10) may be written equivalently in the following form,

using the Kronecker product:

Ȳ (r)(Z ⌦ Im) = B(r+1)
�
(Z>Z)⌦ Im

�
, (SM11)

where Ȳ (r) and B(r+1) are defined using (24). Next, post-multiply both sides of (SM11) by

the matrix (Z>Z)�1 ⌦ Im to obtain (25). To calculate ⌃(r+1), we set @Q(r)/@⌃ = 0k,k to

obtain

⌃(r+1) =
1

mn

nX

i=1

n
XiX

>

i
� X̄(r)

i
µ(r+1)>
i

� µ(r+1)
i

X̄(r)>
i

+ µ(r+1)
i

µ(r+1)>
i

o
,

where µ(r+1)
i

=
P

p

j=1 zijB
(r+1)
j

, i = 1, . . . , n. Moreover, since

µ(r+1) ⌘
h
µ(r+1)
1 , . . . , µ(r+1)

n

i
= Ȳ (r) (P ⌦ Im) ,

it follows that

nX

i=1

⇣
X̄(r)

i
µ(r+1)>
i

+ µ(r+1)
i

X̄(r)>
i

� µ(r+1)
i

µ(r+1)>
i

⌘
= Ȳ (r) (P ⌦ Im) Ȳ

(r)>,

which yields (26). Moreover, (27) and (28) follow easily from (25) and (26) respectively, by

multiplying out the Kronecker products and using the definition Ȳ (r) given in (24). Finally,

in the reflection size-and-shape case where R 2 O(m), all the details are identical except

that the R̄(r)
i
, X̄(r)

i
and Ȳ (r) are calculated using the conditional distribution with density

(SM4) rather than (17). ⇤
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Proof of Lemma A1 and Lemma SM1. Define

R+ ⌘ R+(✓) =

0

@ cos ✓ � sin ✓

sin ✓ cos ✓

1

A , R� ⌘ R�(✓) =

0

@ � cos ✓ sin ✓

sin ✓ cos ✓

1

A .

Note that R+(✓) is a 2⇥2 rotation matrix, because |R+(✓)| = 1, and R�(✓) is an orthogonal

matrix with |R�(✓)| = �1. In the case of Lemma A1 we need to find the conditional

expectations of cos ✓ and sin ✓ where, conditional on M = (mij)2i,j=1 defined in (A2), ✓ has

a von Mises density on the circle with exponent

tr(R+M
>) = (m11 +m22) cos ✓ + (m12 �m21) sin ✓. (SM12)

Consequently, (A3) in Lemma A1 follows from standard results for trigonometric moments

of the von Mises distribution; see e.g. Mardia and Jupp (2000). In the case of Lemma SM1,

we need to find the conditional expectation of cos ✓ and sin ✓ where now ✓ is conditionally

distributed according to a mixture of two von Mises densities whose exponents are given

by (SM12) and

tr(R�M
>) = (m22 �m11) cos ✓ + (m12 +m21) sin ✓,

and mixture proportions !1 and !2, where !1 and !2 are defined in Lemma SM1. Using

these facts, Lemma SM1 also follows from the standard formulae for the trigonometric

moments of the von Mises distribution. ⇤

Proof of Proposition 1 and Proposition SM1. The proof of Proposition 1 depends on three

key points. The first is that, due to the existence of a certain 2:1 map from S4, the unit

sphere in R4, to SO(3), there is a natural identification of the Fisher matrix distributions on

SO(3) with the Bingham distributions on S4; see for example Prentice (1986) and Wood

(1993) for detailed discussion. As a consequence of this identification there is a simple

relationship between the respective normalization constants: if � = diag{�1,�2,�3} and

⌅ = diag{⇠1, . . . , ⇠4}, where the ⇠i are given by (A7), then

C(�) = C4(⌅)/2, (SM13)
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where C(⌅) is defined in (16) and C4(⌅) is defined in (A4) with q = 4.

For a general m⇥m matrix M , let T1�T>

2 denote the restricted singular value decom-

position of M in which T1, T2 2 SO(m) and � = diag{�1, . . .�m}, where �1 � · · · � �m,

�m�1 � 0 and �m has the same sign as |M |; see, for example, Kendall et al. (1999) for this

type of singular value decomposition. Then, by applying the transformation R 7! T>

1 RT2,

and exchanging the order of di↵erentation and integration to obtain the appropriate mo-

ments, it is seen that

R̄ =

Z

R2SO(m)

R exp
�
tr(RM>)

 
(dR)

= T1

⇢Z

R2SO(m)

R exp {tr(R�)} (dR)

�
T>

2

= T1 diag

⇢
r�

Z

R2SO(m)

exp {tr(R�)(dR)}
�

T>

2

= T1 diag{r�C(�)}T>

2 ,

where C(.) is defined in (16). Here, m = 3 so we can make use of (SM13) to obtain

R̄ =
1

C4(⌅)
T1diag{@C4(⌅)/@�1, @C4(⌅)/@�2, @C4(⌅)/@�3}T>

2 , (SM14)

where ⌅ = diag{⇠1, ⇠2, ⇠3, ⇠4} depends on �1,�2 and �3 through (A7), and C4(⌅) is given

by (A4) with q = 4.

The final point is that, to calculate the partial derivatives of the Bingham normalization

constant in (SM14), we can make use of the results in Kume and Wood (2007). Specifically,

Proposition 1 in Kume and Wood (2007) implies that

@C4(⌅)
@⇠j

=
1

2⇡
C6(⌅j), j = 1, 2, 3, 4. (SM15)

Consequently, using (A7) and (SM15),

@C4(⌅)
@�i

=
@C4(⌅)
@⇠1

@⇠1
@�i

+
@C4(⌅)
@⇠2

@⇠2
@�i

+
@C4(⌅)
@⇠3

@⇠3
@�i

+
@C4(⌅)
@⇠4

@⇠4
@�i

=
1

2⇡
{C6(⌅i)� C6(⌅j)� C6(⌅`) + C6(⌅4)} , i = 1, 2, 3,
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where i, j, ` 2 {1, 2, 3} and i 6= j 6= ` 6= i. Also, since x in (A4) is a unit vector, it follows

that
@C4(⌅)
@⇠1

+
@C4(⌅)
@⇠1

+
@C4(⌅)
@⇠1

+
@C4(⌅)
@⇠1

= C4(⌅),

and therefore, as a consequence of (SM15),

C6(⌅1) + C6(⌅2) + C6(⌅3) + C6(⌅4) = 2⇡C4(⌅). (SM16)

After substituting these results in (SM14), making use of (SM16) and rearranging, we

obtain the expression for R̄ in Proposition 1, as required.

In the case of Proposition SM1 we have, following Wood (1993),

C+(M) = C+(�) =
1

2
{C4(⌅) + C4(�⌅)} =

1

2
C4+(⌅),

where M = T1�T>

2 is obtained using (2), C+(.) is defined in (SM3) and C4+(.) is defined in

(SM7) with q = 4. Moreover, using similar calculations to those in the proof of Proposition

1 at (SM14),

R̄ =
1

C4+(⌅)
T1diag{@C4+(⌅)/@�1, @C4+(⌅)/@�2, @C4+(⌅)/@�3}T>

2 ,

from which Proposition SM1 follows. ⇤

SM.C: Calculation of the observed information

We now write the full parameter vector as

✓ = (vec(B1)
>, . . . , vec(Bp)

>, vech(⌃)>)>, (SM17)

where vech is the version of the vectorisation operator which stacks the elements on or below

the diagonal, and is appropriate for symmetric matrices. For example, if A = (aij)3i,j=1,

then vech(A) = (a11, a21, a31, a22, a32, a33)>.
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It is also assumed that B1, . . . , Bp have been standardized as in (7) and (9). Define the

observed information

H(✓) = � @2`M
@✓@✓>

(✓), (SM18)

and define

F (A) =
@2 log C

@vec(A)@vec(A)>
(A), (SM19)

where C(A) is defined in (16). Let Dn, Ln and Kmn denote, respectively, the duplication

matrix, the eliminator matrix and the commutator matrix defined in Magnus & Neudecker

(1988). For a general m ⇥ n matrix A, Kmn is the unique (mn) ⇥ (mn) matrix such

that vec(A>) = Kmnvec(A); and for a general symmetric n⇥n matrix A, Dn is the unique

n2⇥n(n+1)/2 matrix such that Dnvech(A) = vec(A), and Ln is the unique n(n+1)/2⇥n2

matrix such that vech(A) = Lnvec(A).

A relatively compact expression for the observed information is given in the following

result.

Theorem SM2. Write Ĥ = H(✓̂) where H(✓) is defined in (SM18) and ✓̂ is the maximum

likelihood estimator of ✓, and write F̂i = F (µ>

i
⌃�1Ui�i), where F is defined in (SM19).

Then Ĥ may be written as the block matrix

Ĥ =

2

4 Ĥ11 Ĥ12

Ĥ21 Ĥ22

3

5

with blocks defined by

Ĥ11 = � @2`M
@vec(B)@vec(B)>

(✓̂) =
nX

i=1

(zi ⌦ Ikm)
⇣
Im ⌦ ⌃̂�1 � M̂>

i1 F̂iM̂i1

⌘ �
z>
i
⌦ Ikm

�
,

(SM20)

where

M̂i1 =
n⇣

�iUi⌃̂
�1
⌘
⌦ Im

o
Kkm, (SM21)
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B is defined in (20),

Ĥ12 = Ĥ>

21 = � @2`M
@vec(B)vech(⌃)>

(✓̂)

= �
nX

i=1

(zi ⌦ Ikm)
n⇣

µ̂>

i
⌃̂�1

⌘
⌦ ⌃̂�1 + M̂>

i1 F̂iM̂i2

o
Dk

and

M̂i2 =
⇣
�iU

>

i
⌃̂�1

⌘
⌦
⇣
µ̂>

i
⌃̂�1

⌘
;

and, finally,

Ĥ22 = � @2`M
@vech(⌃)vech(⌃)>

(✓̂)

= D>

k

 nX

i=1

n
⌃̂�1

⇣
Ui�

2
i
U>

i
+ µ̂iµ̂

>

i
� m

2
⌃̂
⌘
⌃̂�1

o
⌦ ⌃̂�1

+ M̂>

i2 F̂iM̂i2

�
Dk.

Remark SM1. Estimated standard errors of the components of ✓̂ are given by the diagonal

elements of Ĥ�1.

Remark SM2. In view of the standardization in Section 2.3, which we assume is performed

here, the rows and columns of Ĥ which involve derivatives with respect to components of

B1 which have been set to zero (i.e. those elements of B1 for which the column number is

greater than the row number) should be deleted from Ĥ before calculating the inverse.

Proof of Theorem SM2. The proof of this theorem makes heavy use of results given in

Magnus and Neudecker (1998). Write Ai = µ>

i
⌃�1Ui�i where, as previously, Ui and �i

are obtained from the singular value decomposition of the configuration matrix Xi, i.e.

Xi = Ui�iR>

i
. Then, using the chain rule for vector functions,

@ log C(Ai)

@vec(B)
=

@vec(µi)>

@vec(B)

@vec(Ai)>

@vec(µi)

@ log C(Ai)

@vec(Ai)
.
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Since µi =
P

p

j=1 zijBj, it follows that

vec
�
µ>

i

�
=

pX

j=1

zijvec(Bj)
>

= vec(B)> (zi ⌦ Ikm) ,

and therefore @vec(µi)>/@vec(B) = zi⌦Ikm. Also, using the standard result that vec(ABC) =

(C> ⌦ A)vec(B), and the fact that vec(µ>

i
) = Kkmvec(µi), it follows that

@vec(Ai)>

@vec(µi)
=

@

@vec(µi)

⇥
vec(µ>

i
)>
��

⌃�1Ui�i

�
⌦ Im

 ⇤

=
@

@vec(µi)

⇥
vec(µi)

>K>

km

��
⌃�1Ui�i

�
⌦ Im

 ⇤

= K>

km

��
⌃�1Ui�i

�
⌦ Im

 
,

so
@ log C(Ai)

@vec(B)
= (zi ⌦ Ikm)K

>

km

��
⌃�1Ui�i

�
⌦ Im

 @ log C(Ai)

@vec(Ai)
.

Consequently,

@2 log C(Ai)

@vec(B)@vec(B)>
=

@vec(µi)>

@vec(B)

@vec(Ai)>

@vec(µi)

@2 log C(Ai)

@vec(Ai)@vec(Ai)>

⇥ @vec(Ai)

@vec(µi)>
@vec(µi)

@vec(B)>

= (zi ⌦ Ikm)M
>

i1F (Ai)Mi1

�
z>
i
⌦ Ikm

�
.

Similar calculations show that

1

2

@2tr
�
µ>

i
⌃�1µi

�

@vec(B)@vec(B)>
= (zi ⌦ Ikm)

�
Im ⌦ ⌃�1

� �
z>
i
⌦ Ikm

�
.
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Consequently,

H(✓) = � @2`M(✓)

@vec(B)@vec(B)>

= �
nX

i=1

@2

@vec(B)@vec(B)>
log f1(Ui,�i;B,⌃)

=
nX

i=1

@2

@vec(B)@vec(B)>

⇢
1

2
tr
�
µ>

i
⌃�1µi

�
� log C(µi⌃

�1Ui�i)

�

=
nX

i=1

(zi ⌦ Ikm)
�
Im ⌦ ⌃�1 �M>

i1F (Ai)Mi1

�
,

and (SM20) follows after substituting B = B̂ and ⌃ = ⌃̂.

When di↵erentiating with respect to vech(⌃), the following facts are useful:

@ log |⌃|
@vech(⌃)

= D>

k
vec(⌃�1);

@vec(⌃�1)

@vech(⌃)>
= �

�
⌃�1 ⌦ ⌃�1

�
Dk;

and for a constant matrix C of compatible dimension,

@2tr
�
C>⌃�1C

�

@vech(⌃)@vech(⌃)>
= 2D>

k

��
⌃�1CC>⌃�1

�
⌦ ⌃�1

 
Dk.

Using the above expressions, the proof of the remainder of Theorem SM2 is straightforward

and is omitted. ⇤

We now consider the calculation of the observed information specified in Theorem SM2

in the case m = 3; the case m = 2 follows directly from standard results for derivatives of

the Bessel function I0 and we omit the details. The only step not yet explained is how to

calculate F (A) in (SM19) when m = 3. Following the definition (A5), define

⌅ij = diag{⇠1, ⇠2, ⇠3, ⇠4, ⇠i, ⇠i, ⇠j, ⇠j}.

We have the following result whose proof we omit.
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Proposition SM2. Suppose A has singular value decomposition T1�T>

2 as in Proposi-

tion 1. Then the function F (A) has the following expression in terms of the Bingham

normalising constant:

F (A) =
�
T2 ⌦ T>

1

� �
E
⇥
vec(Ř)vec(Ř)>

⇤
� vec(⌦)vec(⌦)>

 �
T>

2 ⌦ T1

�
,

where the density of Ř = (Řuv)3u,v=1 is f2 in (17) with parameter matrix � = diag(�1,�2,�3)

rather than A, and ⌦ is defined in Proposition 1. Moreover, the elements of E[vec(Ř)vec(Ř)>]

may be calculated as follows:

E[Ř2
ii
] = 1 +

1

C4(⌅)


3C8(⌅jj) + 3C8(⌅``) + 2C8(⌅j`)

⇡2
� 2

⇡
{C6(⌅j) + C6(⌅`)}

�
;

for i 6= j,

E[ŘiiŘjj] = 1 +
1

C4(⌅)

⇢
3C8(⌅``) + C8(⌅ij) + C8(⌅i`) + C8(⌅j`)

⇡2

� C6(⌅i) + C6(⌅j) + 2C6(⌅`)

⇡

�
,

E[Ř2
ij
] =

C8(⌅ij) + C8(⌅`m)

⇡2C4(⌅)
and

E[ŘijŘji] =
C8(⌅ij)� C8(⌅`m)

⇡2C4(⌅)
;

and for all choices of indices not covered above,

E[ŘijŘuv] = 0.

SM.D: Further numerical results relating to §4

For the scalar covariance matrix ⌃ = �2Ik, the di↵erences between the MLE and Pro-

crustes approaches are investigated in §4. Note that for both of these algorithms a right

multiplication of Xi’s by an element from O(k) transforms the respective solutions in the
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same way. Hence, if m = k = 3, we could then focus without loss of generality only to

cases where µ is diagonal. For a given choice of � and of some diagonal µ, we simulate

n = 20, 50, 100 and 1000 random perturbations with ⌃ = �2Ik and compare the respective

quantities for MLE and Procrustes algorithms. We run this procedure 1000 times and the

mean values of these quantities are reported in Tables 1, 4 and 5. We notice that these two

approaches depart from each other as the mean departs from the multiple of the identity

(see the di↵erences for the same � across the three tables).

n and � ⇢s(µ̂p, µ) ⇢s(µ̂EM , µ) ⇢(µ̂p, µ) ⇢(µ̂EM , µ) �p �EM

n= 20 sig= 0.1 0.0101 0.0101 0.0075 0.0075 0.0783 0.0784

n= 50 sig= 0.1 0.0494 0.0494 0.0399 0.0399 0.0747 0.0748

n= 100 sig= 0.1 0.0411 0.0411 0.0256 0.0256 0.0787 0.0787

n= 1000 sig= 0.1 0.0137 0.0136 0.0053 0.0053 0.0813 0.0814

n= 20 sig= 0.3 0.2468 0.1747 0.1519 0.1632 0.2345 0.2965

n= 50 sig= 0.3 0.2213 0.1679 0.1801 0.1682 0.2322 0.2941

n= 100 sig= 0.3 0.1342 0.0404 0.0421 0.0385 0.233 0.295

n= 1000 sig= 0.3 0.1457 0.0246 0.0411 0.0242 0.2369 0.3003

n= 20 sig= 0.8 1.0478 0.7088 0.1547 0.1389 0.4666 0.5979

n= 50 sig= 0.8 1.3456 0.3605 0.5863 0.3677 0.6035 0.8628

n= 100 sig= 0.8 1.0364 0.2633 0.2261 0.2552 0.5806 0.8092

n= 1000 sig= 0.8 1.0349 0.3564 0.2482 0.2637 0.5794 0.8432

Table 4: Details here are the same as those in the caption for Table 1. Choice of mean:

µ1 / diag(6, 4, 2). Note that some of the figures for the EM and Procurstes estimates at

� = 0.1 are the same to 4 d.p due to the fact that we applied the convergence accuracy of

the order 10�3 in our EM procedure while the procrustes estimates are its starting values.
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n and � ⇢s(µ̂p, µ) ⇢s(µ̂EM , µ) ⇢(µ̂p, µ) ⇢(µ̂EM , µ) �p �EM

n= 20 sig= 0.1 0.1039 0.1039 0.0981 0.0981 0.0793 0.0793

n= 50 sig= 0.1 0.0376 0.0375 0.0205 0.0205 0.0796 0.0796

n= 100 sig= 0.1 0.0199 0.0199 0.0194 0.0194 0.0816 0.0817

n= 1000 sig= 0.1 0.0139 0.0139 0.0077 0.0077 0.0816 0.0817

n= 20 sig= 0.3 0.3381 0.3077 0.3267 0.3122 0.2118 0.2668

n= 50 sig= 0.3 0.148 0.0591 0.0597 0.0591 0.2321 0.2925

n= 100 sig= 0.3 0.1852 0.0779 0.0652 0.0674 0.2372 0.2987

n= 1000 sig= 0.3 0.1483 0.0197 0.0164 0.0188 0.2388 0.3014

n= 20 sig= 0.8 1.5146 1.057 0.6288 0.6506 0.565 0.7431

n= 50 sig= 0.8 1.0044 0.5441 0.2987 0.4711 0.5409 0.7368

n= 100 sig= 0.8 1.0563 0.4299 0.1633 0.2993 0.5715 0.7784

n= 1000 sig= 0.8 0.9275 0.6184 0.0505 0.4255 0.5704 0.8453

Table 5: Details here are the same as those in the caption for Table 1. Choice of mean:

µ2 / diag(1, 1, 1). Note that some of the figures for the EM and Procurstes estimates at

� = 0.1 are the same to 4 d.p due the fact that we applied the convergence accuracy of the

order 10�3 in our EM procedure while the procrustes estimates are its starting values.
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